Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Related tags

Deep Learningle_sde
Overview

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

This repo contains official code for the NeurIPS 2021 paper Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations by Jiayao Zhang, Hua Wang, Weijie J. Su.

Discussions welcome, please submit via Discussions. You can also read the reviews on OpenReview.

@misc{zhang2021imitating,
      title={Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations}, 
      author={Jiayao Zhang and Hua Wang and Weijie J. Su},
      year={2021},
      eprint={2110.05960},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Reproducing Experiments

Dependencies

We use Python 3.8 and pytorch for training neural nets, please use pip install -r requirements.txt (potentially in a virtual environment) to install dependencies.

Datasets

We use a dataset of geometric shapes (GeoMNIST) we constructed as well as CIFAR-10. GeoMNIST is lightweighted and will be generated when simulation runs; CIFAR-10 will be downloaded from torchvision.

Code Structure

After instsalling the dependencies, one may navigate through the two Jupyter notebooks for running experiments and producing plots and figures. Below we outline the code structure.

.
├── LICENSE                         # code license
├── README.md                       # this file
├── LE-SDE Data Analysis.ipynb      # reproducing plots and figures
├── LE-SDE Experiments.ipynb        # reproducing experiments
└── src                         # source code
    ├── data_analyzer.py            # processing experiment data
    ├── datasets.py                 # generating and loading datasets
    ├── models.py                   # definition of neural net models
    ├── plotter.py                  # generating plots and figures
    └── utils.py                    # utilities, including training pipelines
└── exp_data                    # experiment data
    ├── *.csv                       # dataframes from neural net training
    └── *.npy                       # numpy.ndarray storing LE-ODE simulations

More info regarding npy files can be found in the numpy documentation.

Reproducing Figures

Experiment Data

Although all simulations can be run on your machine, it is quite time-consuming. Data from our experiments can be downloaded from the following anonymous Dropbox links:

After downloading those tarballs, extract them into ./exp_data (or change the EXP_DIR variable in the notebooks accordingly).

Plotter

Once experiment data are ready, simply follow LE-SDE Data Analysis.ipynb for reproducing all figures.

Owner
Jiayao Zhang
Ph.D. Student at UPenn
Jiayao Zhang
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
A PyTorch implementation of a Factorization Machine module in cython.

fmpytorch A library for factorization machines in pytorch. A factorization machine is like a linear model, except multiplicative interaction terms bet

Jack Hessel 167 Jul 06, 2022
Implementation of the pix2pix model on satellite images

This repo shows how to implement and use the pix2pix GAN model for image to image translation. The model is demonstrated on satellite images, and the

3 May 24, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023
Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021. Introduction We proposed a novel model training paradi

Lucas 103 Dec 14, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].

Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I

Christoph Reich 100 Dec 01, 2022
WarpRNNT loss ported in Numba CPU/CUDA for Pytorch

RNNT loss in Pytorch - Numba JIT compiled (warprnnt_numba) Warp RNN Transducer Loss for ASR in Pytorch, ported from HawkAaron/warp-transducer and a re

Somshubra Majumdar 15 Oct 22, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Vowpal Wabbit 8.1k Jan 06, 2023
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022
Winners of DrivenData's Overhead Geopose Challenge

Winners of DrivenData's Overhead Geopose Challenge

DrivenData 22 Aug 04, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
Event-forecasting - Event Forecasting Algorithms With Python

event-forecasting Event Forecasting Algorithms Theory Correlating events in comp

Intellia ICT 4 Feb 15, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

Liming Jiang 238 Nov 25, 2022
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022
Self-Supervised Contrastive Learning of Music Spectrograms

Self-Supervised Music Analysis Self-Supervised Contrastive Learning of Music Spectrograms Dataset Songs on the Billboard Year End Hot 100 were collect

27 Dec 10, 2022
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023