A PyTorch implementation of a Factorization Machine module in cython.

Overview

fmpytorch

A library for factorization machines in pytorch. A factorization machine is like a linear model, except multiplicative interaction terms between the variables are modeled as well.

The input to a factorization machine layer is a vector, and the output is a scalar. Batching is fully supported.

This is a work in progress. Feedback and bugfixes welcome! Hopefully you find the code useful.

Usage

The factorization machine layers in fmpytorch can be used just like any other built-in module. Here's a simple feed-forward model using a factorization machine that takes in a 50-D input, and models interactions using k=5 factors.

import torch
from fmpytorch.second_order.fm import FactorizationMachine

class MyModel(torch.nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.linear = torch.nn.Linear(100, 50)
        self.dropout = torch.nn.Dropout(.5)
	# This makes a fm layer mapping from 50-D to 1-D.
	# The number of factors is 5.
        self.fm = FactorizationMachine(50, 5)

    def forward(self, x):
        x = self.linear(x)
        x = self.dropout(x)
        x = self.fm(x)
        return x

See examples/toy.py or examples/regression.py for fuller examples.

Installation

This package requires pytorch, numpy, and cython.

To install, you can run:

cd fmpytorch
sudo python setup.py install

Factorization Machine brief intro

A linear model, given a vector x models its output y as

where w are the learnable weights of the model.

However, the interactions between the input variables x_i are purely additive. In some cases, it might be useful to model the interactions between your variables, e.g., x_i * x_j. You could add terms into your model like

However, this introduces a large number of w2 variables. Specifically, there are O(n^2) parameters introduced in this formulation, one for each interaction pair. A factorization machine approximates w2 using low dimensional factors, i.e.,

where each v_i is a low-dimensional vector. This is the forward pass of a second order factorization machine. This low-rank re-formulation has reduced the number of additional parameters for the factorization machine to O(k*n). Magically, the forward (and backward) pass can be reformulated so that it can be computed in O(k*n), rather than the naive O(k*n^2) formulation above.

Currently supported features

Currently, only a second order factorization machine is supported. The forward and backward passes are implemented in cython. Compared to the autodiff solution, the cython passes run several orders of magnitude faster. I've only tested it with python 2 at the moment.

TODOs

  1. Support for sparse tensors.
  2. More interesting useage examples
  3. More testing, e.g., with python 3, etc.
  4. Make sure all of the code plays nice with torch-specific stuff, e.g., GPUs
  5. Arbitrary order factorization machine support
  6. Better organization/code cleaning

Thanks to

Vlad Niculae (@vene) for his sage wisdom.

The original factorization machine citation, which this layer is based off of, is

@inproceedings{rendle2010factorization,
	       title={Factorization machines},
    	       author={Rendle, Steffen},
      	       booktitle={ICDM},
               pages={995--1000},
	       year={2010},
	       organization={IEEE}
}
Owner
Jack Hessel
Research Scientist @ AI2: PhD in CS previously from Cornell
Jack Hessel
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
Learning to Initialize Neural Networks for Stable and Efficient Training

GradInit This repository hosts the code for experiments in the paper, GradInit: Learning to Initialize Neural Networks for Stable and Efficient Traini

Chen Zhu 124 Dec 30, 2022
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or columns of a 2d feature map, as a standalone package for Pytorch

Triangle Multiplicative Module - Pytorch Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or c

Phil Wang 22 Oct 28, 2022
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Adversrial Machine Learning Benchmarks This code belongs to the papers: Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness? Det

Adversarial Machine Learning 9 Nov 27, 2022
A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

TADDY: Anomaly detection in dynamic graphs via transformer This repo covers an reference implementation for the paper "Anomaly detection in dynamic gr

Yue Tan 21 Nov 24, 2022
Object Tracking and Detection Using OpenCV

Object tracking is one such application of computer vision where an object is detected in a video, otherwise interpreted as a set of frames, and the object’s trajectory is estimated. For instance, yo

Happy N. Monday 4 Aug 21, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
Regression Metrics Calculation Made easy for tensorflow2 and scikit-learn

Regression Metrics Installation To install the package from the PyPi repository you can execute the following command: pip install regressionmetrics I

Ashish Patel 11 Dec 16, 2022
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Facebook Research 536 Jan 06, 2023
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
Score refinement for confidence-based 3D multi-object tracking

Score refinement for confidence-based 3D multi-object tracking Our video gives a brief explanation of our Method. This is the official code for the pa

Cognitive Systems Research Group 47 Dec 26, 2022
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".

A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa

10 Nov 14, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction

H3DS Dataset This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction Access

Crisalix 72 Dec 10, 2022
UDP++ (ECCVW 2020 Oral), (Winner of COCO 2020 Keypoint Challenge).

UDP-Pose This is the pytorch implementation for UDP++, which won the Fisrt place in COCO Keypoint Challenge at ECCV 2020 Workshop. Top-Down Results on

20 Jul 29, 2022