U-Net Brain Tumor Segmentation

Overview

U-Net Brain Tumor Segmentation

🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is welcome), you can use TensorFlow dataset API instead.

This repo show you how to train a U-Net for brain tumor segmentation. By default, you need to download the training set of BRATS 2017 dataset, which have 210 HGG and 75 LGG volumes, and put the data folder along with all scripts.

data
  -- Brats17TrainingData
  -- train_dev_all
model.py
train.py
...

About the data

Note that according to the license, user have to apply the dataset from BRAST, please do NOT contact me for the dataset. Many thanks.


Fig 1: Brain Image
  • Each volume have 4 scanning images: FLAIR、T1、T1c and T2.
  • Each volume have 4 segmentation labels:
Label 0: background
Label 1: necrotic and non-enhancing tumor
Label 2: edema 
Label 4: enhancing tumor

The prepare_data_with_valid.py split the training set into 2 folds for training and validating. By default, it will use only half of the data for the sake of training speed, if you want to use all data, just change DATA_SIZE = 'half' to all.

About the method


Fig 2: Data augmentation

Start training

We train HGG and LGG together, as one network only have one task, set the task to all, necrotic, edema or enhance, "all" means learn to segment all tumors.

python train.py --task=all

Note that, if the loss stick on 1 at the beginning, it means the network doesn't converge to near-perfect accuracy, please try restart it.

Citation

If you find this project useful, we would be grateful if you cite the TensorLayer paper:

@article{tensorlayer2017,
author = {Dong, Hao and Supratak, Akara and Mai, Luo and Liu, Fangde and Oehmichen, Axel and Yu, Simiao and Guo, Yike},
journal = {ACM Multimedia},
title = {{TensorLayer: A Versatile Library for Efficient Deep Learning Development}},
url = {http://tensorlayer.org},
year = {2017}
}
Comments
  • TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    Lossy conversion from float64 to uint8. Range [-0.18539370596408844, 2.158207416534424]. Convert image to uint8 prior to saving to suppress this warning. Traceback (most recent call last): File "train.py", line 250, in main(args.task) File "train.py", line 106, in main X[:,:,2,np.newaxis], X[:,:,3,np.newaxis], y])#[:,:,np.newaxis]]) File "train.py", line 26, in distort_imgs fill_mode='constant') TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    opened by shenzeqi 8
  • MemoryError

    MemoryError

    @zsdonghao I am getting the memory error like this, What is the solution for this error?

    Traceback (most recent call last): File "train.py", line 279, in main(args.task) File "train.py", line 78, in main y_test = (y_test > 0).astype(int) MemoryError

    opened by PoonamZ 4
  • Error: Your CPU supports instructions that TensorFlow binary not compiled to use: AVX2

    Error: Your CPU supports instructions that TensorFlow binary not compiled to use: AVX2

    I am running run.py but gives error:

    (base) G:>cd BraTS_2018_U-Net-master

    (base) G:\BraTS_2018_U-Net-master>run.py [*] creates checkpoint ... [*] creates samples/all ... finished Brats18_2013_24_1 2019-06-15 22:05:45.959220: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 Traceback (most recent call last): File "G:\BraTS_2018_U-Net-master\run.py", line 154, in

    File "G:\BraTS_2018_U-Net-master\run.py", line 117, in main t_seg = tf.placeholder('float32', [1, nw, nh, 1], name='target_segment') NameError: name 'model' is not defined

    opened by sapnii2 2
  • TypeError: __init__() got an unexpected keyword argument 'out_size'

    TypeError: __init__() got an unexpected keyword argument 'out_size'

    • After conv: Tensor("u_net/conv8/leaky_relu:0", shape=(5, 1, 1, 512), dtype=float32, device=/device:CPU:0) Traceback (most re screenshot from 2019-02-19 18-02-42 cent call last): File "train.py", line 250, in main(args.task) File "train.py", line 121, in main net = model.u_net_bn(t_image, is_train=True, reuse=False, n_out=1) File "/home/achi/project/u-net-brain-tumor-master/model.py", line 179, in u_net_bn padding=pad, act=None, batch_size=batch_size, W_init=w_init, b_init=b_init, name='deconv7') File "/home/achi/anaconda3/lib/python3.6/site-packages/tensorlayer/decorators/deprecated_alias.py", line 24, in wrapper return f(*args, **kwargs) TypeError: init() got an unexpected keyword argument 'out_size'
    opened by achintacsgit 1
  • Pre-trained model

    Pre-trained model

    I was wondering if you would share a pre-trained model. I would need to run inference-only, and training the model is taking longer than expected.

    Thanks for sharing this project!

    opened by luisremis 1
  • TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    [TL] [!] checkpoint exists ... [TL] [!] samples/all exists ... Lossy conversion from float64 to uint8. Range [-0.19753389060497284, 2.826017379760742]. Convert image to uint8 prior to saving to suppress this warning.

    TypeError Traceback (most recent call last) in 239 tl.files.save_npz(net.all_params, name=save_dir+'/u_net_{}.npz'.format(task), sess=sess) 240 --> 241 main(task='all') 242 243 ##if name == "main":

    in main(task) 103 for i in range(10): 104 x_flair, x_t1, x_t1ce, x_t2, label = distort_imgs([X[:,:,0,np.newaxis], X[:,:,1,np.newaxis], --> 105 X[:,:,2,np.newaxis], X[:,:,3,np.newaxis], y])#[:,:,np.newaxis]]) 106 # print(x_flair.shape, x_t1.shape, x_t1ce.shape, x_t2.shape, label.shape) # (240, 240, 1) (240, 240, 1) (240, 240, 1) (240, 240, 1) (240, 240, 1) 107 X_dis = np.concatenate((x_flair, x_t1, x_t1ce, x_t2), axis=2)

    in distort_imgs(data) 23 x1, x2, x3, x4, y = tl.prepro.zoom_multi([x1, x2, x3, x4, y], 24 zoom_range=[0.9, 1.1], is_random=True, ---> 25 fill_mode='constant') 26 return x1, x2, x3, x4, y 27

    TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    opened by BTapan 0
  • TensorFlow Implemetation

    TensorFlow Implemetation

    Do you have implementation of brain tumor segmentation code directly in tensorflow without using tensorlayer? If yes, can you share the same? Thank you.

    opened by rupalkapdi 0
  • What is checkpoint?

    What is checkpoint?

    When I run "python train.py" and then have a checkpoint folder is created. What function of checkpoint folder? Thank you

    And I also have another question. When we had the picture, as follows. Is that the end result? I mean we can submit them to the Brast_2018 challenge? image

    Thank you very much.

    opened by tphankr 0
  • Making sense

    Making sense

    Novice here, i noticed the shape of the X_train arrays ended with 4. (240,240,4) Does each of those channel represent the type of the scan ( T1, t2, flair, t1ce ) ?

    opened by guido-niku 1
  • Classification Layer - Activation & Shape?

    Classification Layer - Activation & Shape?

    Hi!

    I went through this repository after reading your paper. Architecture on page 6, shows the final classification layer to produce feature maps of shape (240, 240, 2) which may indicate the use of a Softmax activation (not specified in the paper). On the contrary, model used in code has a classification layer of shape (240, 240, 1) using Sigmoid activation.

    Kindly clarify this ambiguity.

    opened by stalhabukhari 2
Releases(0.1)
Owner
Hao
Assistant Professor @ Peking University
Hao
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
Submanifold sparse convolutional networks

Submanifold Sparse Convolutional Networks This is the PyTorch library for training Submanifold Sparse Convolutional Networks. Spatial sparsity This li

Facebook Research 1.8k Jan 06, 2023
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Pytorch implementation of

EfficientTTS Unofficial Pytorch implementation of "EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture"(arXiv). Disclaimer: Somebo

Liu Songxiang 109 Nov 16, 2022
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
Quantization library for PyTorch. Support low-precision and mixed-precision quantization, with hardware implementation through TVM.

HAWQ: Hessian AWare Quantization HAWQ is an advanced quantization library written for PyTorch. HAWQ enables low-precision and mixed-precision uniform

Zhen Dong 293 Dec 30, 2022
A Dataset for Direct Quotation Extraction and Attribution in News Articles.

DirectQuote - A Dataset for Direct Quotation Extraction and Attribution in News Articles DirectQuote is a corpus containing 19,760 paragraphs and 10,3

THUNLP-MT 9 Sep 23, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
A collection of random and hastily hacked together scripts for investigating EU-DCC

A collection of random and hastily hacked together scripts for investigating EU-DCC

Ryan Barrett 8 Mar 01, 2022
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
Library to enable Bayesian active learning in your research or labeling work.

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
EssentialMC2 Video Understanding

EssentialMC2 Introduction EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2( relatio

Alibaba 106 Dec 11, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample

Alias-Free-Torch Simple torch module implementation of Alias-Free GAN. This repository including Alias-Free GAN style lowpass sinc filter @filter.py A

이준혁(Junhyeok Lee) 64 Dec 22, 2022
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022