Automatic Idiomatic Expression Detection

Related tags

Deep LearningDISC
Overview

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC)

An Idiomatic identifier that detects the presence and span of idiomatic expression in a given sentence.

Table of Contents
  1. About The Project
  2. Getting Started
  3. Usage
  4. License
  5. Contact
  6. Acknowledgements

About The Project

This project is a supervised idiomatic expression identification method. Given a sentence that contains a potentially idiomatic expression (PIE), the model identifies the span of the PIE if it is indeed used in an idiomatic sense, otherwise, the model does not identify the PIE. The identification is done via checking the smemantic compatibility. More details will be updated here (Detail description, figures, etc.).

The paper will appear in TACL.

Built With

This model is heavily relying the resources/libraries list as following:

Getting Started

The implementation here includes processed data created for MAGPIE random-split dataset. The model checkpoint that trained with MAGPIE random-split is also provided.

Prerequisites

All the dependencies for this project is listed in requirements.txt. You can install them via a standard command:

pip install -r requirements.txt

It is highly recommanded to start a conda environment with PyTorch properly installed based on your hardward before install the other requirements.

Checkpoint

To run the model with a pre-trained checkpoint, please first create a ./checkpoints folder at root. Then, please download the checkpoint from Google Drive via this Link. Please put the checkpoint in the ./checkpoints folder.

Usage

Configuration

Before running the demo or experiments (training or testing), please see the config.py which sets the configuration of the model. Some parameters there, such as MODE needs to be set appropriately for the model to run correctly. Please see comments for more details.

Demo

To start, please go through the examples provided in demo.ipynb. In there, we process a given input sentence into the model input data and then run model inference to extract the idiomatic expression (if present) from the input sentence (visualized).

Data processing

To process a dataset (such as MAGPIE) for model training and testing, please refer to ./data_processing/MAGPIE/read_comp_data_processing.ipynb. It takes a dataset with sententences and their PIE lcoations as input and generate all the necessary files for model training and inference.

Training and Testing

For training and testing, please refer to train.py and test.py. Note that test.py is used to produce evaluation scores as shown in the paper. inference.py is used to produce prediction for sentences.

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Ziheng Zeng - [email protected]

Project Link: https://github.com/your_username/repo_name

Acknowledgements

[TODO]:

Add the following in README:

  • Method detail descrption
  • Method figure
  • Demo walkthrough
  • Data processing tips and instructions Add requirements.txt
This's an implementation of deepmind Visual Interaction Networks paper using pytorch

Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch

Mahmoud Gamal Salem 166 Dec 06, 2022
A repository for generating stylized talking 3D and 3D face

style_avatar A repository for generating stylized talking 3D faces and 2D videos. This is the repository for paper Imitating Arbitrary Talking Style f

Haozhe Wu 191 Dec 22, 2022
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022
FwordCTF 2021 Infrastructure and Source code of Web/Bash challenges

FwordCTF 2021 You can find here the source code of the challenges I wrote (Web and Bash) in FwordCTF 2021 and the source code of the platform with our

Kahla 5 Nov 25, 2022
Convolutional Neural Network for Text Classification in Tensorflow

This code belongs to the "Implementing a CNN for Text Classification in Tensorflow" blog post. It is slightly simplified implementation of Kim's Convo

Denny Britz 5.5k Jan 02, 2023
An NVDA add-on to split screen reader and audio from other programs to different sound channels

An NVDA add-on to split screen reader and audio from other programs to different sound channels (add-on idea credit: Tony Malykh)

Joseph Lee 7 Dec 25, 2022
CowHerd is a partially-observed reinforcement learning environment

CowHerd is a partially-observed reinforcement learning environment, where the player walks around an area and is rewarded for milking cows. The cows try to escape and the player can place fences to h

Danijar Hafner 6 Mar 06, 2022
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters"

Manga Character Screentone Synthesis Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters" presented in IEEE ISM 2

Tsubota 2 Nov 20, 2021
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running

Teddy Koker 15 Sep 29, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
A community run, 5-day PyTorch Deep Learning Bootcamp

Deep Learning Winter School, November 2107. Tel Aviv Deep Learning Bootcamp : http://deep-ml.com. About Tel-Aviv Deep Learning Bootcamp is an intensiv

Shlomo Kashani. 1.3k Sep 04, 2021
Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

3 Aug 09, 2022
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
This is a simple framework to make object detection dataset very quickly

FastAnnotation Table of contents General info Requirements Setup General info This is a simple framework to make object detection dataset very quickly

Serena Tetart 1 Jan 24, 2022
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022