NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Overview

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning

Tim Pearce, Jun Zhu
Offline RL workshop, NeurIPS 2021
Paper: https://arxiv.org/abs/2104.04258
Four minute introduction video: https://youtu.be/rnz3lmfSHv0
Gameplay examples: https://youtu.be/KTY7UhjIMm4

Contents

  1. Code Overview
  2. Trained Models
  3. Datasets
  4. Requirements
  5. License
  6. Disclaimer
  7. Maintenance

Code Overview

We briefly describe the workflow: dataset capture -> data processing -> training -> testing.

  1. Use dm_record_data.py to scrape data as a spectator, or dm_record_data_me_wasd.py to record when actively playing. This creates .npy files with screenshots and metadata.
  2. Run dm_infer_actions.py on .npy files from step 1 to infer actions from the metadata ('inverse dynamics model'). These are appended to the same .npy files. The visulations and stats produced by this script can be used to clean the data -- e.g. if the metadata from GSI and RAM disagrees for some variables, this is a sign that the data might be unreliable, if there are long periods of immobility (vel_static), this can mean you were tracking a motionless player. We suggest deleting such files.
  3. Run dm_pretrain_process.py on .npy files from step 2, this creates new .hdf5 files containing screenshots and onehot targets.
  4. (Optional.) Run tools_extract_metaadata.py to pull out metadata from the .npy files, saves as new .npy file.
  5. Run dm_train_model.py to train a model.
  6. Use tools_create_stateful.py to create a 'stateful' version of the model.
  7. Script dm_run_agent.py runs the model in the CSGO environment.

Brief overview of each script's purpose.

  • config.py : Contains key global hyperparameters and settings. Also several functions used across many scripts.
  • screen_input.py : Gets screenshot of the CSGO window, does some cropping and downsampling. Uses win32gui, win32ui, win32con, OpenCV.
  • key_output.py : Contains functions to send mouse clicks, set mouse position and key presses. Uses ctypes.
  • key_output.py : Contains functions to check for mouse location, mouse clicks and key presses. Uses win32api and ctypes.
  • meta_utils.py : Contains functions to set up RAM reading. Also contains a server class to connect to CSGO's GSI tool -- you should update MYTOKENHERE variable if setting up GSI.
  • dm_hazedumper_offsets.py : Contains offsets to read variables from RAM directly. They updated by the function in meta_utils.py.
  • dm_record_data.py : Records screenshots and metadata when in spectator mode. (Note these record scripts can be temperamental, and depend on hazedumper offsets being up to date.)
  • dm_record_data_me_wasd.py : Records screenshots and metadata when actively playing on local machine.
  • dm_infer_actions.py : For recorded dataset, infer actions from metadata and append to same file. Also stats indicative of data quality, and some functionality to rename files sequentially.
  • dm_pretrain_process.py : Takes .npy files from dm_infer_actions.py, and creates twin .hdf5 files ready for fast data loading with inputs and labels as expected by model. Also a function to strip image from .npy files.
  • dm_train_model.py : Trains the neural network model. Either from scratch or from a previous checkpoint.
  • dm_run_agent.py : Runs a trained model in CSGO. Option to collect metadata (eg score) using IS_GSI=True.
  • tools_dataset_inspect.py : Minimal code to open different datasets and accompanying metadata files.
  • tools_extract_metadata.py : Cuts out metadata (currvars, infer_a and helper_arr) from the original .npy files, and saves as new .npy without image. Aggregates 100 files together.
  • tools_dataset_stats.py : Collates metadata from the large online dataset, and produces summary stats and figures as in appendix A.
  • tools_create_stateful.py : This takes a trained 'non-stateful' model and saves a cloned 'stateful' version that should be used at test time (otherwise LSTM states reset between each forward pass). Required due to keras weirdness.
  • tools_map_coverage_analysis.py : Visualises map coverage of different agent and datasets, computes Earth mover's distance.
  • tools_view_save_egs.py : Opens and displays sequences of images .hdf5 and metadata .npy. Option of overlaying inferred actions. Option of saving as .png.
  • console_csgo_setup.txt : Console commands for setting up CSGO levels.

Trained Models

Four trained models are provided. There are 'non-stateful' (use during training) and 'stateful' (use at test time) versions of each.
Download link: https://drive.google.com/drive/folders/11n5Nxj6liSXKP6_vl-FjwfRHtWiSO6Ry?usp=sharing

  • ak47_sub_55k_drop_d4 : Pretrained on AK47 sequences only.
  • ak47_sub_55k_drop_d4_dmexpert_28 : Finetuned on expert deathmatch data.
  • ak47_sub_55k_drop_d4_aimexpertv2_60 : Finetuned on aim mode expert data.
  • July_remoterun7_g9_4k_n32_recipe_ton96__e14 : Pretrained on full dataset.

Datasets

For access to all datasets, please email the first author (tp424 at cam dot ac dot uk) with the title 'csgo dataset access' and a one sentence summary of how you intend to use the data. The email address you send from will be granted access to the cloud account. A brief description of dataset and directory structure is given below.

  • dataset_dm_scraped_dust2/hdf5_dm_july2021_*.hdf5

    • total files: 5500
    • approx size: 700 GB
    • map: dust2
    • gamemode: deathmatch
    • source: scraped from online servers
  • dataset_dm_expert_dust2/hdf5_dm_july2021_expert_*.hdf5

    • total files: 190
    • approx size: 24 GB
    • map: dust2
    • gamemode: deathmatch
    • source: manually created, clean actions
  • dataset_aim_expert/hdf5_aim_july2021_expert_*.hdf5

    • total files: 45
    • approx size: 6 GB
    • map: aim map
    • gamemode: aim mode
    • source: manually created, clean actions
  • dataset_dm_expert_othermaps/hdf5_dm_nuke_expert_*.hdf5

    • total files: 10
    • approx size: 1 GB
    • map: nuke
    • gamemode: deathmatch
    • source: manually created, clean actions
  • dataset_dm_expert_othermaps/hdf5_dm_nuke_expert_*.hdf5

    • total files: 10
    • approx size: 1 GB
    • map: nuke
    • gamemode: deathmatch
    • source: manually created, clean actions
  • dataset_dm_expert_othermaps/hdf5_dm_inferno_expert_*.hdf5

    • total files: 10
    • approx size: 1 GB
    • map: mirage
    • gamemode: deathmatch
    • source: manually created, clean actions
  • dataset_metadata/currvarsv2_dm_july2021_*_to_*.npy, currvarsv2_dm_july2021_expert_*_to_*.npy, currvarsv2_dm_mirage_expert_1_to_100.npy, currvarsv2_dm_inferno_expert_1_to_100.npy, currvarsv2_dm_nuke_expert_1_to_100.npy, currvarsv2_aim_july2021_expert_1_to_100.npy

    • total files: 55 + 2 + 1 + 1 + 1 + 1 = 61
    • approx size: 6 GB
    • map: as per filename
    • gamemode: as per filename
    • source: as per filename
  • location_trackings_backup/

    • total files: 305
    • approx size: 0.5 GB
    • map: dust2
    • gamemode: deathmatch
    • source: contains metadata used to compute map coverage analysis
      • currvarsv2_agentj22 is the agent trained over the full online dataset
      • currvarsv2_agentj22_dmexpert20 is previous model finetuned on the clean expert dust2 dataset
      • currvarsv2_bot_capture is medium difficulty built-in bot

Structure of .hdf5 files (image and action labels):

Each file contains an ordered sequence of 1000 frames (~1 minute) of play. This contains screenshots, as well as processed action labels. We chose .hdf5 format for fast dataloading, since a subset of frames can be accessed without opening the full file. The lookup keys are as follows (where i is frame number 0-999)

  • frame_i_x: is the image
  • frame_i_xaux: contains actions applied in previous timesteps, as well as health, ammo, and team. see dm_pretrain_preprocess.py for details, note this was not used in our final version of the agent
  • frame_i_y: contains target actions in flattened vector form; [keys_pressed_onehot, Lclicks_onehot, Rclicks_onehot, mouse_x_onehot, mouse_y_onehot]
  • frame_i_helperarr: in format [kill_flag, death_flag], each a binary variable, e.g. [1,0] means the player scored a kill and did not die in that timestep

Structure of .npy files (scraped metadata):

Each .npy file contains metadata corresponding to 100 .hdf5 files (as indicated by file name) They are dictionaries with keys of format: file_numi_frame_j for file number i, and frame number j in 0-999 The values are of format [curr_vars, infer_a, frame_i_helperarr] where,

  • curr_vars: contains a dictionary of the metadata originally scraped -- see dm_record_data.py for details
  • infer_a: are inferred actions, [keys_pressed,mouse_x,mouse_y,press_mouse_l,press_mouse_r], with mouse_x and y being continuous values and keys_pressed is in string format
  • frame_i_helperarr: is a repeat of the .hdf5 file

Requirements

Python and OS requirements

Below are the Python package versions used in development. The OS used for interacting with the game (testing and recording) was Windows, and for model training was Linux.

Python: '3.6.9' 
tensorflow: '2.3.0'
tensorflow.keras: '2.4.0'
h5py: '2.10.0'
numpy: '1.18.5'
OpenCV (cv2): '4.4.0'
scipy: '1.4.1'
ctypes: '1.1.0'
json: '2.0.9'

Hardware

Running the agent requires making forward passes through a large convolutional neural networks at 16 fps. If you do not have a CUDA enabled GPU, the agent's performance may degrade.

CSGO requirements

We collected the datasets and conducted testing over game versions 1.37.7.0 to 1.38.0.1. CSGO is continually updated and this may affect performance. The map dust2 received minor updates in 1.38.0.2. To test on the map from version 1.38.0.1, download here: https://steamcommunity.com/sharedfiles/filedetails/?id=2606435621. Future updates to gameplay may also degrade performance, consider rolling back the CSGO game version in this case.

Game State Integration (GSI) is used to pull out some metadata about the game. The dm_run_agent.py script is written so that it may be run without installing GSI (option IS_GSI). If you'd like to record data or extract metadata while running the agent, you'll need to set up GSI: https://www.reddit.com/r/GlobalOffensive/comments/cjhcpy/game_state_integration_a_very_large_and_indepth/ and update MYTOKENHERE in meta_utils.py.

Game settings (resolution, cross hair, mouse sensitivity etc) are documented in the paper, appendix E.

License

This repo can be used for personal projects and open-sourced research. We do not grant a license for its commercial use in any form. If in doubt, please contact us for permission.

Disclaimer

Whilst our code is not intended for cheating/hacking purposes, it's possible that Valve may detect the usage of some of these scripts in game (for example simulated mouse movements and RAM parsing) which in turn might lead to suspicion of cheating. We accept no liability for these sort of issues. Use it at your own risk!

Maintenance

This repo shares code used for academic research. It's not production ready. It's unlikely to be robust across operating systems, python versions, python packages, future CSGO updates etc. There's no plan to actively maintain this repo for these purposes, nor to fix minor bugs. If you'd like to help out with this, please reach out.

Owner
Tim Pearce
AI researcher \\ Curr: Tsinghua Uni \\ Prev: Cambridge Uni
Tim Pearce
GPU-Accelerated Deep Learning Library in Python

Hebel GPU-Accelerated Deep Learning Library in Python Hebel is a library for deep learning with neural networks in Python using GPU acceleration with

Hannes Bretschneider 1.2k Dec 21, 2022
Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch

Next Word Prediction Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch 🎬 Project Demo ✔ Application is hosted on Streamlit. You can see t

Vivek7 3 Aug 26, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)

Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh

Zheng Li 9 Sep 26, 2022
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Eloi Moliner Juanpere 57 Jan 05, 2023
The official homepage of the (outdated) COCO-Stuff 10K dataset.

COCO-Stuff 10K dataset v1.1 (outdated) Holger Caesar, Jasper Uijlings, Vittorio Ferrari Overview Welcome to official homepage of the COCO-Stuff [1] da

Holger Caesar 263 Dec 11, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

Object DGCNN & DETR3D This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110

Wang, Yue 539 Jan 07, 2023
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply c

Max Halford 24 Dec 20, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 14 Oct 27, 2022
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
Pun Detection and Location

Pun Detection and Location “The Boating Store Had Its Best Sail Ever”: Pronunciation-attentive Contextualized Pun Recognition Yichao Zhou, Jyun-yu Jia

lawson 3 May 13, 2022
Official implementation of Pixel-Level Bijective Matching for Video Object Segmentation

BMVOS This is the official implementation of Pixel-Level Bijective Matching for Video Object Segmentation, to appear in WACV 2022. @article{cho2021pix

Suhwan Cho 13 Dec 14, 2022
Small repo describing how to use Hugging Face's Wav2Vec2 with PyCTCDecode

🤗 Transformers Wav2Vec2 + PyCTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with kensho-technologies's PyCTCDec

Patrick von Platen 102 Oct 22, 2022