Hierarchical Time Series Forecasting using Prophet

Overview

htsprophet

Hierarchical Time Series Forecasting using Prophet

Credit to Rob J. Hyndman and research partners as much of the code was developed with the help of their work.

https://www.otexts.org/fpp

https://robjhyndman.com/publications/

Credit to Facebook and their fbprophet package.

https://facebookincubator.github.io/prophet/

It was my intention to make some of the code look similar to certain sections in the Prophet and (Hyndman's) hts packages.

Downloading

  1. pip install htsprophet

If you'd like to just skip to coding with the package, runHTS.py should help you with that, but if you like reading, the following should help you understand how I built htsprophet and how it works.

Part I: The Data

I originally used Redfin traffic data to build this package.

I pulled the data so that date was in the first column, my layers were the middle columns, and the number I wanted to forecast was in the last column.

I made a function called makeWeekly() , that rolls up your data into the weekly level. It’s not a necessary function, it was mostly just convenient for me.

So the data looked like this:

Date Platform Medium BusinessMarket Sessions
1100 B.C. Stone Tablet Land Birmingham 23234
... Car Phone Air Auburn 2342
... Sea Evanston 233
... Seattle 445
... 46362

I then ran my orderHier() function with just this dataframe as its input.

NOTE: you cannot run this function if you have more than 4 columns in the middle (in between Date and Sessions for ex.)

To run this function, you specify the data, and how you want your middle columns to be ordered.

So orderHier(data, 2, 1, 3) means you want the second column after date to be the first level of the hierarchy.

Our example would look like this:

Alt text

Date Total Land Air Sea Land_Stone tablet Land_Car Phone Air_Stone tablet
1100 B.C. 24578 23135 555 888 23000 135 550
1099 B.C. 86753 86654 44 55 2342 84312 22
... ... ... ... ... ... ... ...
*All numbers represent the number of sessions for each node in the Hierarchy

If you have more than 4 categorical columns, then you must get the data in this format on your own while also producing the list of lists called nodes

Nodes – describes the structure of the hierarchy.

Here it would equal [[3],[2,2,2],[4,4,4,4,4,4]]

There are 3 nodes in the first level: Land, Air, Sea.

There are 2 children for each of those nodes: Stone tablet, Car phone.

There are 4 business markets for each of those nodes: Tokyo, Hamburg etc.

If you use the orderHier function, nodes will be the second output of the function.

Part II: Prophet Inputs

Anything that you would specify in Prophet you can specify in hts().

It’s flexible and will allow you to input a dataframe of values for inputs like cap, capF, and changepoints.

All of these inputs are specified when you call hts, and after that you just let it run.

The following is the description of inputs and outputs for hts as well as the specified defaults:

Parameters
----------------
 y - dataframe of time-series data
           Layout:
               0th Col - Time instances
               1st Col - Total of TS
               2nd Col - One of the children of the Total TS
               3rd Col - The other child of the Total TS
               ...
               ... Rest of the 1st layer
               ...
               Xth Col - First Child of the 2nd Col
               ...
               ... All of the 2nd Col's Children
               ...
               X+Yth Col - First Child of the 3rd Col
               ...
               ..
               .   And so on...

 h - number of step ahead forecasts to make (int)

 nodes - a list or list of lists of the number of child nodes at each level
 Ex. if the hierarchy is one total with two child nodes that comprise it, the nodes input would be [2]
 
 method – (String)  the type of hierarchical forecasting method that the user wants to use. 
            Options:
            "OLS" - optimal combination using ordinary least squares (Default), 
            "WLSS" - optimal combination using structurally weighted least squares, 
            "WLSV" - optimal combination using variance weighted least squares, 
            "FP" - forcasted proportions (top-down)
            "PHA" - proportions of historical averages (top-down)
            "AHP" - average historical proportions (top-down)
            "BU" - bottom-up (simple addition)
            "CVselect" - select which method is best for you based on 3-fold Cross validation (longer run time)
 
 freq - (Time Frequency) input for the forecasting function of Prophet 
 
 include_history - (Boolean) input for the forecasting function of Prophet
 
 transform - (None or "BoxCox") Do you want to transform your data before fitting the prophet function? If yes, type "BoxCox"
            
 cap - (Dataframe or Constant) carrying capacity of the input time series.  If it is a dataframe, then
                               the number of columns must equal len(y.columns) - 1
                               
 capF - (Dataframe or Constant) carrying capacity of the future time series.  If it is a dataframe, then
                                the number of columns must equal len(y.columns) - 1
 
 changepoints - (DataFrame or List) changepoints for the model to consider fitting. If it is a dataframe, then
                                    the number of columns must equal len(y.columns) - 1
 
 n_changepoints - (constant or list) changepoints for the model to consider fitting. If it is a list, then
                                     the number of items must equal len(y.columns) - 1
 skipFitting - (Boolean) if y is already a dictionary of dataframes, set this to True, and DO NOT run with method = "cvSelect" or transform = "BoxCox"
 
 numThreads - (int) number of threads you want to use when running cvSelect. Note: 14 has shown to decrease runtime by 10 percent 
 
 All other inputs - see Prophet
 
Returns
-----------------
 ynew - a dictionary of DataFrames with predictions, seasonalities and trends that can all be plotted

Don’t forget to specify the frequency if you’re not using daily data.

All other functions should be self-explanatory.

Part III: Room For Improvement

  1. Prediction intervals
Owner
Collin Rooney
Collin Rooney
Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

1 Aug 06, 2022
GAM timeseries modeling with auto-changepoint detection. Inspired by Facebook Prophet and implemented in PyMC3

pm-prophet Pymc3-based universal time series prediction and decomposition library (inspired by Facebook Prophet). However, while Faceook prophet is a

Luca Giacomel 314 Dec 25, 2022
XManager: A framework for managing machine learning experiments 🧑‍🔬

XManager is a platform for packaging, running and keeping track of machine learning experiments. It currently enables one to launch experiments locally or on Google Cloud Platform (GCP). Interaction

DeepMind 620 Dec 27, 2022
Scikit-Garden or skgarden is a garden for Scikit-Learn compatible decision trees and forests.

Scikit-Garden or skgarden (pronounced as skarden) is a garden for Scikit-Learn compatible decision trees and forests.

260 Dec 21, 2022
Machine Learning for Time-Series with Python.Published by Packt

Machine-Learning-for-Time-Series-with-Python Become proficient in deriving insights from time-series data and analyzing a model’s performance Links Am

Packt 124 Dec 28, 2022
SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.

SageMaker Python SDK SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the S

Amazon Web Services 1.8k Jan 01, 2023
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Jan 05, 2023
Extreme Learning Machine implementation in Python

Python-ELM v0.3 --- ARCHIVED March 2021 --- This is an implementation of the Extreme Learning Machine [1][2] in Python, based on scikit-learn. From

David C. Lambert 511 Dec 20, 2022
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

23.3k Dec 31, 2022
Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto: Machine Learning: Linguagens de Programacao 2004-2001 Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2

Victor Hugo Negrisoli 0 Jun 29, 2021
QML: A Python Toolkit for Quantum Machine Learning

QML is a Python2/3-compatible toolkit for representation learning of properties of molecules and solids.

176 Dec 09, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 648 Dec 16, 2022
Data Version Control or DVC is an open-source tool for data science and machine learning projects

Continuous Machine Learning project integration with DVC Data Version Control or DVC is an open-source tool for data science and machine learning proj

Azaria Gebremichael 2 Jul 29, 2021
Anytime Learning At Macroscale

On Anytime Learning At Macroscale Learning from sequential data dumps (key) Requirements Python 3.7 Pytorch 1.9.0 Hydra 1.1.0 (pip install hydra-core

Meta Research 8 Mar 29, 2022
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Brett Vogelsang 2 Jan 18, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Priyansh Sharma 7 Nov 09, 2022
A demo project to elaborate how Machine Learn Models are deployed on production using Flask API

This is a salary prediction website developed with the help of machine learning, this makes prediction of salary on basis of few parameters like interview score, experience test score.

1 Feb 10, 2022
A simple python program which predicts the success of a movie based on it's type, actor, actress and director

Movie-Success-Prediction A simple python program which predicts the success of a movie based on it's type, actor, actress and director. The program us

Mahalinga Prasad R N 1 Dec 17, 2021
MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.

MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. Th

Swiggy 66 Dec 06, 2022