(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Overview

Wasserstein Distances for Stereo Disparity Estimation

Accepted in NeurIPS 2020 as Spotlight. [Project Page]

Wasserstein Distances for Stereo Disparity Estimation

by Divyansh Garg, Yan Wang, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger and Wei-Lun Chao

Figure

Citation

@inproceedings{div2020wstereo,
  title={Wasserstein Distances for Stereo Disparity Estimation},
  author={Garg, Divyansh and Wang, Yan and Hariharan, Bharath and Campbell, Mark and Weinberger, Kilian and Chao, Wei-Lun},
  booktitle={NeurIPS},
  year={2020}
}

Introduction

Existing approaches to depth or disparity estimation output a distribution over a set of pre-defined discrete values. This leads to inaccurate results when the true depth or disparity does not match any of these values. The fact that this distribution is usually learned indirectly through a regression loss causes further problems in ambiguous regions around object boundaries. We address these issues using a new neural network architecture that is capable of outputting arbitrary depth values, and a new loss function that is derived from the Wasserstein distance between the true and the predicted distributions. We validate our approach on a variety of tasks, including stereo disparity and depth estimation, and the downstream 3D object detection. Our approach drastically reduces the error in ambiguous regions, especially around object boundaries that greatly affect the localization of objects in 3D, achieving the state-of-the-art in 3D object detection for autonomous driving.

Contents

Our Wasserstein loss modification W_loss can be easily plugged in existing stereo depth models to improve the training and obtain better results.

We release the code for CDN-PSMNet and CDN-SDN models.

Requirements

  1. Python 3.7
  2. Pytorch 1.2.0+
  3. CUDA
  4. pip install -r ./requirements.txt
  5. SceneFlow
  6. KITTI

Pretrained Models

TO BE ADDED.

Datasets

You have to download the SceneFlow and KITTI datasets. The structures of the datasets are shown in below.

SceneFlow Dataset Structure

SceneFlow
    | monkaa
        | frames_cleanpass
        | disparity
    | driving
        | frames_cleanpass
        | disparity
    | flyingthings3d
        | frames_cleanpass 
        | disparity

KITTI Object Detection Dataset Structure

KITTI
    | training
        | calib
        | image_2
        | image_3
        | velodyne
    | testing
        | calib
        | image_2
        | image_3

Generate soft-links of SceneFlow Datasets. The results will be saved in ./sceneflow folder. Please change to fakepath path-to-SceneFlow to the SceneFlow dataset location before running the script.

python sceneflow.py --path path-to-SceneFlow --force

Convert the KITTI velodyne ground truths to depth maps. Please change to fakepath path-to-KITTI to the SceneFlow dataset location before running the script.

python ./src/preprocess/generate_depth_map.py --data_path path-to-KITTI/ --split_file ./split/trainval.txt

Optionally download KITTI2015 datasets for evaluating stereo disparity models.

Training and Inference

We have provided all pretrained models Pretrained Models. If you only want to generate the predictions, you can directly go to step 3.

The default setting requires four gpus to train. You can use smaller batch sizes which are btrain and bval, if you don't have enough gpus.

We provide code for both stereo disparity and stereo depth models.

1 Train CDN-SDN from Scratch on SceneFlow Dataset

python ./src/main_depth.py -c src/configs/sceneflow_w1.config

The checkpoints are saved in ./results/stack_sceneflow_w1/.

Follow same procedure to train stereo disparity model, but use src/main_disp.py and change to a disparity config.

2 Train CDN-SDN on KITTI Dataset

python ./src/main_depth.py -c src/configs/kitti_w1.config \
    --pretrain ./results/sceneflow_w1/checkpoint.pth.tar --dataset  path-to-KITTI/training/

Before running, please change the fakepath path-to-KITTI/ to the correct one. --pretrain is the path to the pretrained model on SceneFlow. The training results are saved in ./results/kitti_w1_train.

If you are working on evaluating CDN on KITTI testing set, you might want to train CDN on training+validation sets. The training results will be saved in ./results/sdn_kitti_trainval.

python ./src/main_depth.py -c src/configs/kitti_w1.config \
    --pretrain ./results/sceneflow_w1/checkpoint.pth.tar \
    --dataset  path-to-KITTI/training/ --split_train ./split/trainval.txt \
    --save_path ./results/sdn_kitti_trainval

The disparity models can also be trained on KITTI2015 datasets using src/kitti2015_w1_disp.config.

3 Generate Predictions

Please change the fakepath path-to-KITTI. Moreover, if you use the our provided checkpoint, please modify the value of --resume to the checkpoint location.

  • a. Using the model trained on KITTI training set, and generating predictions on training + validation sets.
python ./src/main_depth.py -c src/configs/kitti_w1.config \
    --resume ./results/sdn_kitti_train/checkpoint.pth.tar --datapath  path-to-KITTI/training/ \
    --data_list ./split/trainval.txt --generate_depth_map --data_tag trainval

The results will be saved in ./results/sdn_kitti_train/depth_maps_trainval/.

  • b. Using the model trained on KITTI training + validation set, and generating predictions on testing sets. You will use them when you want to submit your results to the leaderboard.

The results will be saved in ./results/sdn_kitti_trainval_set/depth_maps_trainval/.

# testing sets
python ./src/main_depth.py -c src/configs/kitti_w1.config \
    --resume ./results/sdn_kitti_trainval/checkpoint.pth.tar --datapath  path-to-KITTI/testing/ \
    --data_list=./split/test.txt --generate_depth_map --data_tag test

The results will be saved in ./results/sdn_kitti_trainval/depth_maps_test/.

4 Train 3D Detection with Pseudo-LiDAR

For training 3D object detection models, follow step 4 and after in the Pseudo-LiDAR_V2 repo https://github.com/mileyan/Pseudo_Lidar_V2.

Results

Results on the Stereo Disparity

Figure

3D Object Detection Results on KITTI leader board

Figure

Questions

Please feel free to email us if you have any questions.

Divyansh Garg [email protected] Yan Wang [email protected] Wei-Lun Chao [email protected]

Owner
Divyansh Garg
Making robots intelligent
Divyansh Garg
A Python library for working with arbitrary-dimension hypercomplex numbers following the Cayley-Dickson construction of algebras.

Hypercomplex A Python library for working with quaternions, octonions, sedenions, and beyond following the Cayley-Dickson construction of hypercomplex

7 Nov 04, 2022
Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022
Vrcwatch - Supply the local time to VRChat as Avatar Parameters through OSC

English: README-EN.md VRCWatch VRCWatch は、VRChat 内のアバター向けに現在時刻を送信するためのプログラムです。 使

Kosaki Mezumona 17 Nov 30, 2022
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
A Lighting Pytorch Framework for Recommendation System, Easy-to-use and Easy-to-extend.

Torch-RecHub A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend. 安装 pip install torch-rechub 主要特性 scikit-learn风格易用

Mincai Lai 67 Jan 04, 2023
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
The 3rd place solution for competition

The 3rd place solution for competition "Lyft Motion Prediction for Autonomous Vehicles" at Kaggle Team behind this solution: Artsiom Sanakoyeu [Homepa

Artsiom 104 Nov 22, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Building a real-time environment using webcam frame division in OpenCV and classify cropped images using a fine-tuned vision transformers on hybryd datasets samples for facial emotion recognition.

Visual Transformer for Facial Emotion Recognition (FER) This project has the aim to build an efficient Visual Transformer for the Facial Emotion Recog

Mario Sessa 8 Dec 12, 2022
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
Privacy-Preserving Portrait Matting [ACM MM-21]

Privacy-Preserving Portrait Matting [ACM MM-21] This is the official repository of the paper Privacy-Preserving Portrait Matting. Jizhizi Li∗, Sihan M

Jizhizi_Li 212 Dec 27, 2022
TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection

TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection; Accepted by ICCV2021. Note: The complete code (including training and t

S.X.Zhang 84 Dec 13, 2022
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022