[ECCV 2020] XingGAN for Person Image Generation

Overview

License CC BY-NC-SA 4.0 Python 3.6 Packagist Last Commit Maintenance Contributing Ask Me Anything !

Contents

XingGAN or CrossingGAN

| Project | Paper |
XingGAN for Person Image Generation
Hao Tang12, Song Bai2, Li Zhang2, Philip H.S. Torr2, Nicu Sebe13.
1University of Trento, Italy, 2University of Oxford, UK, 3Huawei Research Ireland, Ireland.
In ECCV 2020.
The repository offers the official implementation of our paper in PyTorch.

In the meantime, check out our related ACM MM 2019 paper Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation, BMVC 2020 oral paper Bipartite Graph Reasoning GANs for Person Image Generation, and ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer.

Framework

Comparison Results


License

Creative Commons License
Copyright (C) 2020 University of Trento, Italy.

All rights reserved. Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International)

The code is released for academic research use only. For commercial use, please contact [email protected].

Installation

Clone this repo.

git clone https://github.com/Ha0Tang/XingGAN
cd XingGAN/

This code requires PyTorch 1.0.0 and python 3.6.9+. Please install the following dependencies:

  • pytorch 1.0.0
  • torchvision
  • numpy
  • scipy
  • scikit-image
  • pillow
  • pandas
  • tqdm
  • dominate

To reproduce the results reported in the paper, you need to run experiments on NVIDIA DGX1 with 4 32GB V100 GPUs for DeepFashion, and 1 32GB V100 GPU for Market-1501.

Dataset Preparation

Please follow SelectionGAN to directly download both Market-1501 and DeepFashion datasets.

This repository uses the same dataset format as SelectionGAN and BiGraphGAN. so you can use the same data for all these methods.

Generating Images Using Pretrained Model

Market-1501

sh scripts/download_xinggan_model.sh market

Then,

  1. Change several parameters in test_market.sh.
  2. Run sh test_market.sh for testing.

DeepFashion

sh scripts/download_xinggan_model.sh deepfashion

Then,

  1. Change several parameters in test_deepfashion.sh.
  2. Run sh test_deepfashion.sh for testing.

Train and Test New Models

Market-1501

  1. Change several parameters in train_market.sh.
  2. Run sh train_market.sh for training.
  3. Change several parameters in test_market.sh.
  4. Run sh test_market.sh for testing.

DeepFashion

  1. Change several parameters in train_deepfashion.sh.
  2. Run sh train_deepfashion.sh for training.
  3. Change several parameters in test_deepfashion.sh.
  4. Run sh test_deepfashion.sh for testing.

Evaluation

We adopt SSIM, mask-SSIM, IS, mask-IS, and PCKh for evaluation of Market-1501. SSIM, IS, PCKh for DeepFashion.

  1. SSIM, mask-SSIM, IS, mask-IS: install python3.5, tensorflow 1.4.1, and scikit-image==0.14.2. Then run, python tool/getMetrics_market.py or python tool/getMetrics_fashion.py.

  2. PCKh: install python2, and pip install tensorflow==1.4.0, then set export KERAS_BACKEND=tensorflow. After that, run python tool/crop_market.py or python tool/crop_fashion.py. Next, download pose estimator and put it under the root folder, and run python compute_coordinates.py. Lastly, run python tool/calPCKH_market.py or python tool/calPCKH_fashion.py.

Please refer to Pose-Transfer for more details.

Acknowledgments

This source code is inspired by both Pose-Transfer and SelectionGAN.

Related Projects

BiGraphGAN | GestureGAN | C2GAN | SelectionGAN | Guided-I2I-Translation-Papers

Citation

If you use this code for your research, please consider giving a star and citing our paper 🦖 :

XingGAN

@inproceedings{tang2020xinggan,
  title={XingGAN for Person Image Generation},
  author={Tang, Hao and Bai, Song and Zhang, Li and Torr, Philip HS and Sebe, Nicu},
  booktitle={ECCV},
  year={2020}
}

If you use the original BiGraphGAN, GestureGAN, C2GAN, and SelectionGAN model, please consider giving stars and citing the following papers 🦖 :

BiGraphGAN

@inproceedings{tang2020bipartite,
  title={Bipartite Graph Reasoning GANs for Person Image Generation},
  author={Tang, Hao and Bai, Song and Torr, Philip HS and Sebe, Nicu},
  booktitle={BMVC},
  year={2020}
}

GestureGAN

@article{tang2019unified,
  title={Unified Generative Adversarial Networks for Controllable Image-to-Image Translation},
  author={Tang, Hao and Liu, Hong and Sebe, Nicu},
  journal={IEEE Transactions on Image Processing (TIP)},
  year={2020}
}

@inproceedings{tang2018gesturegan,
  title={GestureGAN for Hand Gesture-to-Gesture Translation in the Wild},
  author={Tang, Hao and Wang, Wei and Xu, Dan and Yan, Yan and Sebe, Nicu},
  booktitle={ACM MM},
  year={2018}
}

C2GAN

@article{tang2021total,
  title={Total Generate: Cycle in Cycle Generative Adversarial Networks for Generating Human Faces, Hands, Bodies, and Natural Scenes},
  author={Tang, Hao and Sebe, Nicu},
  journal={IEEE Transactions on Multimedia (TMM)},
  year={2021}
}

@inproceedings{tang2019cycleincycle,
  title={Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation},
  author={Tang, Hao and Xu, Dan and Liu, Gaowen and Wang, Wei and Sebe, Nicu and Yan, Yan},
  booktitle={ACM MM},
  year={2019}
}

SelectionGAN

@inproceedings{tang2019multi,
  title={Multi-channel attention selection gan with cascaded semantic guidance for cross-view image translation},
  author={Tang, Hao and Xu, Dan and Sebe, Nicu and Wang, Yanzhi and Corso, Jason J and Yan, Yan},
  booktitle={CVPR},
  year={2019}
}

@article{tang2020multi,
  title={Multi-channel attention selection gans for guided image-to-image translation},
  author={Tang, Hao and Xu, Dan and Yan, Yan and Corso, Jason J and Torr, Philip HS and Sebe, Nicu},
  journal={arXiv preprint arXiv:2002.01048},
  year={2020}
}

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Hao Tang ([email protected]).

Collaborations

I'm always interested in meeting new people and hearing about potential collaborations. If you'd like to work together or get in contact with me, please email [email protected]. Some of our projects are listed here.


Progress is impossible without change, and those who cannot change their minds cannot change anything.

Owner
Hao Tang
To develop a complete mind: Study the science of art; Study the art of science. Learn how to see. Realize that everything connects to everything else.
Hao Tang
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
Cross View SLAM

Cross View SLAM This is the associated code and dataset repository for our paper I. D. Miller et al., "Any Way You Look at It: Semantic Crossview Loca

Ian D. Miller 99 Dec 09, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu

machen 11 Nov 27, 2022
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
SmallInitEmb - LayerNorm(SmallInit(Embedding)) in a Transformer to improve convergence

SmallInitEmb LayerNorm(SmallInit(Embedding)) in a Transformer I find that when t

PENG Bo 11 Dec 25, 2022
SigOpt wrappers for scikit-learn methods

SigOpt + scikit-learn Interfacing This package implements useful interfaces and wrappers for using SigOpt and scikit-learn together Getting Started In

SigOpt 73 Sep 30, 2022
A Dataset of Python Challenges for AI Research

Python Programming Puzzles (P3) This repo contains a dataset of python programming puzzles which can be used to teach and evaluate an AI's programming

Microsoft 850 Dec 24, 2022
An LSTM based GAN for Human motion synthesis

GAN-motion-Prediction An LSTM based GAN for motion synthesis has a few issues reading H3.6M data from A.Jain et al , will fix soon. Prediction of the

Amogh Adishesha 9 Jun 17, 2022
Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection. Project page: https://herohuyongtao.github.io/research/

Yongtao Hu 46 Dec 12, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

24 Dec 31, 2022
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter

styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers

Mang Su Hyun 2 Feb 24, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

229 Dec 13, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

TU Delft Intelligent Vehicles 26 Jul 13, 2022
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022