Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

Overview

MOT Tracked object bounding box association (CenterTrack++)

New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are added onto the original CenterTrack tracker. The proposed method enables the computation of IOU distance matrix for more accurate object association compared to single displacement offset in the original CenterTrack.

Modification to CenterTrack method, image modified from CenterTrack

Abstract

The recent development of multi-object tracking (MOT) on point-based joint detection and tracking methods has attracted much research attention. CenterTrack tracking algorithm is one of such promising methods. It achieves state-of-the-art tracking performance using a simple detection model and single-frame spatial offsets to localize objects and predict their associations in a single network. However, this method still suffers from high identity switches due to the inferior association method. Only point displacement distance matrix is used to associate objects, which is not robust to deal with occlusion scenarios. To reduce the high number of identity switches and improve the tracking accuracy, more effective spatial information should be used in association. In this paper, we propose to incorporate a simple tracked object bounding box and overlapping prediction based on the current frame onto the CenterTrack algorithm. Specifically, we propose a Intersection over Union (IOU) distance cost matrix in the association step instead of point displacement distance. We evaluate our proposed tracker on the MOT17 test dataset, showing that our proposed method can reduce identity switches significantly by 22.6% and obtain a notable improvement of 1.5% in IDF1 compared to the original CenterTrack’s under the same tracklet lifetime.

Main Contributions

  • Proposed two branches (tracked box size and IOU)on top of the existing CenterTrack method for IOU distance metric computation in object association
  • Evaluation the proposed method on MOT17 dataset and obtain significant reduction in IDs and notable improvements in tracking accuracy score

Two new branches

The idea of the proposed method is to enhance the original displacement only association. Inspired by the IOU distance in SORT and IOU-Tracker, IOU distance can be used for more accurate object association across frames. IOU distance is calculated as 1 - IOU(bounding box of detected object in the previous frame and the predicted tracked object bounding box in the previous frame based on the current frame)

Tracked Object Size prediction

In order to obtain the IOU distance, the bounding box of the tracked object in the previous frame should be learnt. In this project, two methods were used to learn the tracked bounding box.

Tracking_wh: Directly learn the width and height of the tracked object bounding box in the previous frame.

Tracking_ltrb: Learn the offsets of the left, top, right and bottom of bounding box from the tracked object center in the previous frame.

The tracking_wh(left) and tracking_ltrb(right) approach illustration.

IOU prediction

To further suppress inaccurate association, the IOU value of the tracked object bounding box in adjacent frames is learnt to provide a threshold to filter unlikely associations. We would set the IOU distance to infinity if IOU distance > IOU.

Association Method

Main results

Comparison with other SOTA tracker on MOT17 test set

Note: S= Spatial features, A=appearance features

Tracker Association Features MOTA IDF1 IDs
TubeTK S 63 58.6 4137
CenterTrack S 67.8 64.7 3039
Ours S 68.1 66.2 2352
SST A 52.4 49.5 8431
CTrackerV1 S+A 66.6 57.4 5529
DEFT S+A 66.6 65.4 2823
FairMOT S+A 73.7 72.3 3303

Ablative studies on tracked size prediction method

Tracking_wh

Association Method IDF1 MOTA IDs FP(%) FN(%)
DIS 69.2 66.2 219 3.9 29.5
IOU 71.1 66.7 204 3.6 29.3
Combined 70.9 66.2 233 3.9 29.6
DIS→IOU 70 66.2 218 3.9 29.5
IOU→DIS 69.8 66.8 185 3.6 29.2

Tracking_ltrb

Association Method IDF1 MOTA IDs FP(%) FN(%)
DIS 69.2 66.2 219 3.9 29.5
IOU 72.4 66.7 191 3.8 29.2
Combined 70.8 66.5 236 3.8 29.3
DIS→IOU 70.5 66.6 202 3.8 29.2
IOU→DIS 71.4 66.7 166 3.8 29.2

Installation

Please refer to INSTALL.md for installation instructions.

Training and Evaluation

  • Download the crowdhuman pretrained model from xinyizhou/CenterTrack MODEL ZOO.md to models
  • prepare the data and convert it into COCO format refer to the original CenterTrack repo.
  • change the dataset root directory data_dir in opt.py
  • ablative studies for tracking_wh and tracking_ltrb approach respectively with five association method (IOU,DIS,Combined, IOU→DIS, DIS→IOU)
sh experiments/mot17val_tracking_wh.sh

sh experiments/mot17val_tracking_ltrb.sh

The trained model on MOT17val dataset using two approach are available in google drive, tracking_ltrb_70val.pth, tracking_wh_70val.pth.

  • Train on full mot17 training set and run model on the test set for evaluation
sh experiments/mot17full.sh

The trained models on full MOT17 dataset using ltrb approach is available in the google drive.

Demo comparison

Occlusion case

Original CenterTrack (left) vs CenterTrack++ (right)

Object exiting the frame

Original CenterTrack (left) vs CenterTrack++ (right)

Acknowledgement

A large part of the code is adapted from xingyizhou/CenterTrack, thanks for their wonderful inspiration.

Citation

If you find this paper and code useful in your research, please cite our papers.

@misc{yang2021multiobject,
      title={Multi-object Tracking with Tracked Object Bounding Box Association}, 
      author={Nanyang Yang and Yi Wang and Lap-Pui Chau},
      year={2021},
      eprint={2105.07901},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Nanyang Technological University Information Engineering and Media Student
SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

SCALoss PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022). Introduction IoU-based lo

TuZheng 20 Sep 07, 2022
CS50's Introduction to Artificial Intelligence Test Scripts

CS50's Introduction to Artificial Intelligence Test Scripts 🤷‍♂️ What's this? 🤷‍♀️ This repository contains Python scripts to automate tests for mos

Jet Kan 2 Dec 28, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
Implementation of U-Net and SegNet for building segmentation

Specialized project Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Te

Martin.w-e 3 Dec 07, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
Source code for Transformer-based Multi-task Learning for Disaster Tweet Categorisation (UCD's participation in TREC-IS 2020A, 2020B and 2021A).

Source code for "UCD participation in TREC-IS 2020A, 2020B and 2021A". *** update at: 2021/05/25 This repo so far relates to the following work: Trans

Congcong Wang 4 Oct 19, 2021
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
ICLR2021 (Under Review)

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning This repository contains the official PyTorch implementation o

Haoyi Fan 58 Dec 30, 2022
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c

Antoine Bosselut 575 Jan 01, 2023
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 04, 2022
Wordplay, an artificial Intelligence based crossword puzzle solver.

Wordplay, AI based crossword puzzle solver A crossword is a word puzzle that usually takes the form of a square or a rectangular grid of white- and bl

Vaibhaw 4 Nov 16, 2022
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022
Tree Nested PyTorch Tensor Lib

DI-treetensor treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors. Almost all the operation can be supp

OpenDILab 167 Dec 29, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Wenxuan Zhou 146 Nov 29, 2022
Object detection (YOLO) with pytorch, OpenCV and python

Real Time Object/Face Detection Using YOLO-v3 This project implements a real time object and face detection using YOLO algorithm. You only look once,

1 Aug 04, 2022