K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

Overview

KCP

License Build

The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for publication in the IEEE Robotics and Automation Letters (RA-L).

KCP is an efficient and effective local point cloud registration approach targeting for real-world 3D LiDAR scan matching problem. A simple (and naive) understanding is: ICP iteratively considers the closest point of each source point, but KCP considers the k closest points of each source point in the beginning, and outlier correspondences are mainly rejected by the maximum clique pruning method. KCP is written in C++ and we also support Python binding of KCP (pykcp).

For more, please refer to our paper:

  • Yu-Kai Lin, Wen-Chieh Lin, Chieh-Chih Wang, KCP: k-Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching. To appear in IEEE Robotics and Automation Letters (RA-L), 2022. (pdf) (code) (video)

If you use this project in your research, please cite:

@article{lin2022kcp,
  title={{KCP: k-Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching}},
  author={Lin, Yu-Kai and Lin, Wen-Chieh and Wang, Chieh-Chih},
  journal={IEEE Robotics and Automation Letters},
  volume={#},
  number={#},
  pages={#--#},
  year={2022},
}

and if you find this project helpful or interesting, please Star the repository. Thank you!

Table of Contents

📦 Resources

⚙️ Installation

The project is originally developed in Ubuntu 18.04, and the following instruction supposes that you are using Ubuntu 18.04 as well. I am not sure if it also works with other Ubuntu versions or other Linux distributions, but maybe you can give it a try 👍

Also, please feel free to open an issue if you encounter any problems of the following instruction.

Step 1. Preparing the Dependencies

You have to prepare the following packages or libraries used in KCP:

  1. A C++ compiler supporting C++14 and OpenMP (e.g. GCC 7.5).
  2. CMake3.11
  3. Git
  4. Eigen3 ≥ 3.3
  5. nanoflann
  6. TEASER++d79d0c67

GCC, CMake, Git, and Eigen3

sudo apt update
sudo apt install -y g++ build-essential libeigen3-dev git

sudo apt install -y software-properties-common lsb-release
wget -O - https://apt.kitware.com/keys/kitware-archive-latest.asc 2>/dev/null | gpg --dearmor - | sudo tee /etc/apt/trusted.gpg.d/kitware.gpg >/dev/null
sudo apt update
sudo apt install cmake

nanoflann

cd ~
git clone https://github.com/jlblancoc/nanoflann
cd nanoflann
mkdir build && cd build
cmake .. -DNANOFLANN_BUILD_EXAMPLES=OFF -DNANOFLANN_BUILD_TESTS=OFF
make
sudo make install

TEASER++

cd ~
git clone https://github.com/MIT-SPARK/TEASER-plusplus
cd TEASER-plusplus
git checkout d79d0c67
mkdir build && cd build
cmake .. -DBUILD_TESTS=OFF -DBUILD_PYTHON_BINDINGS=OFF -DBUILD_DOC=OFF
make
sudo make install

Step 2. Preparing Dependencies of Python Binding (Optional)

The Python binding of KCP (pykcp) uses pybind11 to achieve operability between C++ and Python. KCP will automatically download and compile pybind11 during the compilation stage. However, you need to prepare a runable Python environment with header files for the Python C API (python3-dev):

sudo apt install -y python3 python3-dev

Step 3. Building KCP

Execute the following commands to build KCP:

Without Python Binding

git clone https://github.com/StephLin/KCP
cd KCP
mkdir build && cd build
cmake ..
make

With Python Binding

git clone https://github.com/StephLin/KCP
cd KCP
mkdir build && cd build
cmake .. -DKCP_BUILD_PYTHON_BINDING=ON -DPYTHON_EXECUTABLE=$(which python3)
make

Step 4. Installing KCP to the System (Optional)

This will make the KCP library available in the system, and any C++ (CMake) project can find the package by find_package(KCP). Think twice before you enter the following command!

# Under /path/to/KCP/build
sudo make install

🌱 Examples

We provide two examples (one for C++ and the other for Python 3) These examples take nuScenes' LiDAR data to perform registration. Please check

for more information.

📝 Some Remarks

Tuning Parameters

The major parameters are

  • kcp::KCP::Params::k and
  • kcp::KCP::Params::teaser::noise_bound,

where k is the number of nearest points of each source point selected to be part of initial correspondences, and noise_bound is the criterion to determine if a correspondence is correct. In our paper, we suggest k=2 and noise_bound the 3-sigma (we use noise_bound=0.06 meters for nuScenes data), and those are default values in the library.

To use different parameters to the KCP solver, please refer to the following snippets:

C++

#include <kcp/solver.hpp>

auto params = kcp::KCP::Params();

params.k                  = 2;
params.teaser.noise_bound = 0.06;

auto solver = kcp::KCP(params);

Python

import pykcp

params = pykcp.KCPParams()
params.k = 2
params.teaser.noise_bound = 0.06

solver = pykcp.KCP(params)

Controlling Computational Cost

Instead of correspondence-free registration in TEASER++, KCP considers k closest point correspondences to reduce the major computational cost of the maximum clique algorithm, and we have expressed the ability for real-world scenarios without any complicate or learning-based feature descriptor in the paper. However, it is still possible to encounter computational time or memory issue if there are too many correspondences fed to the solver.

We suggest controlling your keypoints around 500 for k=2 (in this way the computational time will be much closer to the one presented in the paper).

Torwarding Global Registration Approaches

It is promising that KCP can be extended to a global registration approach if a fast and reliable sparse feature point representation method is employed.

In this way, the role of RANSAC, a fast registration approach usually used in learning based approaches, is similar to KCP's, but the computation results of KCP are deterministic, and also, KCP has better theoretical supports.

🎁 Acknowledgement

This project refers to the computation of the smoothness term defined in LOAM (implemented in Tixiao Shan's excellent project LIO-SAM, which is licensed under BSD-3). We modified the definition of the smoothness term (and it is called the multi-scale curvature in this project).

Owner
Yu-Kai Lin
Studying for a master program of Computer Science in NCTU, Taiwan.
Yu-Kai Lin
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 04, 2023
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

xmu-xiaoma66 7.7k Jan 05, 2023
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

João Pedro Rodrigues Mattos 0 Sep 15, 2021
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)

Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM) Introduction The average lifetime of the $D^{0}$ me

Son Gyo Jung 1 Dec 17, 2021
Acute ischemic stroke dataset

AISD Acute ischemic stroke dataset contains 397 Non-Contrast-enhanced CT (NCCT) scans of acute ischemic stroke with the interval from symptom onset to

Kongming Liang 21 Sep 06, 2022
上海交通大学全自动抢课脚本,支持准点开抢与抢课后持续捡漏两种模式。2021/06/08更新。

Welcome to Course-Bullying-in-SJTU-v3.1! 2021/6/8 紧急更新v3.1 更新说明 为了更好地保护用户隐私,将原来用户名+密码的登录方式改为微信扫二维码+cookie登录方式,不再需要配置使用pytesseract。在使用扫码登录模式时,请稍等,二维码将马

87 Sep 13, 2022
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

High-Performance Brain-to-Text Communication via Handwriting Overview This repo is associated with this manuscript, preprint and dataset. The code can

Francis R. Willett 306 Jan 03, 2023
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
PyTorch implementation of GLOM

GLOM PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attent

Yeonwoo Sung 20 Aug 17, 2022