Nested Named Entity Recognition for Chinese Biomedical Text

Overview

CBio-NAMER

CBioNAMER (Nested nAMed Entity Recognition for Chinese Biomedical Text) is our method used in CBLUE (Chinese Biomedical Language Understanding Evaluation), a benchmark of Nested Named Entity Recognition. We got the 2nd price of the benchmark by 2021/12/07. Single model CBioNAMER also achieves top20 in CBLUE. The score of CBioNAMER has surpassed human(67.0 in F1-score​).

Result

Results of our method:

ensemble

Results of our single model CBioNAMER:

single

Approach

CBioNAMER is a sub-model in our result, which is based on GlobalPointer (a powerful open-source model, thanks for author, we rewrite it with Pytorch) and MacBert.

Usage

First, install PyTorch>=1.7.0. There's no restriction on GPU or CUDA.

Then, install this repo as a Python package:

$ pip install CBioNAMER

Python package transformers==4.6.1 would be automatically installed as well.

API

The CBioNAMER package provides the following methods:

CBioNAMER.load_NER(model_save_path='./checkpoint/macbert-large_dict.pth', maxlen=512, c_size=9, id2c=_id2c, c2c=_c2c)

Returns the pretrained model. It will download the model as necessary. The model would use the first CUDA device if there's any, otherwise using CPU instead.

The model_save_path argument specifies the path of the pretrained model weight.

The maxlen argument specifies the max length of input sentences. The sentences longer than maxlen would be cut off.

The c_size argument specifies the number of entity class. Here is 9 for CBLUE.

The id2c argument specifies the mapping between id and entity class. By default, the id2c argument for CBLUE is:

_id2c = {0: 'dis', 1: 'sym', 2: 'pro', 3: 'equ', 4: 'dru', 5: 'ite', 6: 'bod', 7: 'dep', 8: 'mic'}

The c2c argument specifies the mapping between entity class and its Chinese meaning. By default, the c2c argument for CBLUE is:

_c2c = {'dis': "疾病", 'sym': "临床表现", 'pro': "医疗程序", 'equ': "医疗设备", 'dru': "药物", 'ite': "医学检验项目", 'bod': "身体", 'dep': "科室", 'mic': "微生物类"}


The model returned by CBioNAMER.load_NER() supports the following methods:

model.recognize(text: str, threshold=0)

Given a sentence, returns a list of dictionaries with recognized entity, the format of the dictionary is {'start_idx': entity's starting index, 'end_idx': entity's ending index, 'type': entity class, 'Chinese_type': Chinese meaning of entity class, 'entity': recognized entity}. The threshold argument specifies that the returned list only contains the recognized entity with confidence score higher than threshold.

model.predict_to_file(in_file: str, out_file: str)

Given input and output .json file path, the model would do inference according in_file, and the recognized entity would be saved in out_file. The output file can be submitted to CBLUE. The format of input file is like:

[
  {
    "text": "该技术的应用使某些遗传病的诊治水平得到显著提高。"
  },
    ...
  {
    "text": "There is a sentence."
  }
]

Examples

import CBioNAMER

NER = CBioNAMER.load_NER()
in_file = './CMeEE_test.json'
out_file = './CMeEE_test_answer.json'
NER.predict_to_file(in_file, out_file)
import CBioNAMER

NER = CBioNAMER.load_NER()
text = "该技术的应用使某些遗传病的诊治水平得到显著提高。"
recognized_entity = NER.recognize(text)
print(recognized_entity)
# output:[{'start_idx': 9, 'end_idx': 11, 'type': 'dis', 'Chinese_type': '疾病', 'entity': '遗传病'}]
You might also like...
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.

NeuroNER NeuroNER is a program that performs named-entity recognition (NER). Website: neuroner.com. This page gives step-by-step instructions to insta

Pytorch-Named-Entity-Recognition-with-BERT
Pytorch-Named-Entity-Recognition-with-BERT

BERT NER Use google BERT to do CoNLL-2003 NER ! Train model using Python and Inference using C++ ALBERT-TF2.0 BERT-NER-TENSORFLOW-2.0 BERT-SQuAD Requi

Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs
Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs

ItemSubjector Tool made to add main subject statements to items based on the title using a home-brewed CirrusSearch-based Named Entity Recognition alg

Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition
Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

Use Google's BERT for named entity recognition (CoNLL-2003 as the dataset).

For better performance, you can try NLPGNN, see NLPGNN for more details. BERT-NER Version 2 Use Google's BERT for named entity recognition (CoNLL-2003

Named Entity Recognition API used by TEI Publisher

TEI Publisher Named Entity Recognition API This repository contains the API used by TEI Publisher's web-annotation editor to detect entities in the in

RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2

RoNER RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2. It is meant to be an easy to use, hi

Spacy-ginza-ner-webapi - Named Entity Recognition API with spaCy and GiNZA
Spacy-ginza-ner-webapi - Named Entity Recognition API with spaCy and GiNZA

Named Entity Recognition API with spaCy and GiNZA I wrote a blog post about this

Releases(v0.0.1)
Various Algorithms for Short Text Mining

Short Text Mining in Python Introduction This package shorttext is a Python package that facilitates supervised and unsupervised learning for short te

Kwan-Yuet 466 Dec 06, 2022
spaCy plugin for Transformers , Udify, ELmo, etc.

Camphr - spaCy plugin for Transformers, Udify, Elmo, etc. Camphr is a Natural Language Processing library that helps in seamless integration for a wid

342 Nov 21, 2022
Count the frequency of letters or words in a text file and show a graph.

Word Counter By EBUS Coding Club Count the frequency of letters or words in a text file and show a graph. Requirements Python 3.9 or higher matplotlib

EBUS Coding Club 0 Apr 09, 2022
The official repository of the ISBI 2022 KNIGHT Challenge

KNIGHT The official repository holding the data for the ISBI 2022 KNIGHT Challenge About The KNIGHT Challenge asks teams to develop models to classify

Nicholas Heller 4 Jan 22, 2022
Label data using HuggingFace's transformers and automatically get a prediction service

Label Studio for Hugging Face's Transformers Website • Docs • Twitter • Join Slack Community Transfer learning for NLP models by annotating your textu

Heartex 135 Dec 29, 2022
A Domain Specific Language (DSL) for building language patterns. These can be later compiled into spaCy patterns, pure regex, or any other format

RITA DSL This is a language, loosely based on language Apache UIMA RUTA, focused on writing manual language rules, which compiles into either spaCy co

Šarūnas Navickas 60 Sep 26, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 124 Jan 03, 2023
A framework for implementing federated learning

This is partly the reproduction of the paper of [Privacy-Preserving Federated Learning in Fog Computing](DOI: 10.1109/JIOT.2020.2987958. 2020)

DavidChen 46 Sep 23, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
ElasticBERT: A pre-trained model with multi-exit transformer architecture.

This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
Pytorch version of BERT-whitening

BERT-whitening This is the Pytorch implementation of "Whitening Sentence Representations for Better Semantics and Faster Retrieval". BERT-whitening is

Weijie Liu 255 Dec 27, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
An Explainable Leaderboard for NLP

ExplainaBoard: An Explainable Leaderboard for NLP Introduction | Website | Download | Backend | Paper | Video | Bib Introduction ExplainaBoard is an i

NeuLab 319 Dec 20, 2022
Repository for Project Insight: NLP as a Service

Project Insight NLP as a Service Contents Introduction Features Installation Setup and Documentation Project Details Demonstration Directory Details H

Abhishek Kumar Mishra 286 Dec 06, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
A paper list for aspect based sentiment analysis.

Aspect-Based-Sentiment-Analysis A paper list for aspect based sentiment analysis. Survey [IEEE-TAC-20]: Issues and Challenges of Aspect-based Sentimen

jiangqn 419 Dec 20, 2022
NewsMTSC: (Multi-)Target-dependent Sentiment Classification in News Articles

NewsMTSC: (Multi-)Target-dependent Sentiment Classification in News Articles NewsMTSC is a dataset for target-dependent sentiment classification (TSC)

Felix Hamborg 79 Dec 30, 2022
Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

AI-BOT Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

Thempra 2 Dec 21, 2022
The ibet-Prime security token management system for ibet network.

ibet-Prime The ibet-Prime security token management system for ibet network. Features ibet-Prime is an API service that enables the issuance and manag

BOOSTRY 8 Dec 22, 2022
Beyond the Imitation Game collaborative benchmark for enormous language models

BIG-bench 🪑 The Beyond the Imitation Game Benchmark (BIG-bench) will be a collaborative benchmark intended to probe large language models, and extrap

Google 1.3k Jan 01, 2023