PyWorld3 is a Python implementation of the World3 model

Overview

Logo

The World3 model revisited in Python

License: CeCILL 2.1


PyWorld3 is a Python implementation of the World3 model, as described in the book Dynamics of Growth in a Finite World. This version slightly differs from the previous one used in the world-known reference the Limits to Growth, because of different numerical parameters and a slightly different model structure.

The World3 model is based on an Ordinary Differential Equation solved by a Backward Euler method. Although it is described with 12 state variables, taking internal delay functions into account raises the problem to the 29th order. For the sake of clarity and model calibration purposes, the model is structured into 5 main sectors: Population, Capital, Agriculture, Persistent Pollution and Nonrenewable Resource.

Install and Hello World3

Install pyworld3 either via:

pip install pyworld3

or by cloning the repository, installing the requirements numpy, scipy and matplotlib and do:

python setup.py install

Run the provided example to simulate the standard run, known as the Business as usual scenario:

import pyworld3
pyworld3.hello_world3()

As shown below, the simulation output compares well with the original print. For a tangible understanding by the general audience, the usual chart plots the trajectories of the:

  • population (POP) from the Population sector,
  • nonrenewable resource fraction remaining (NRFR) from the Nonrenewable Resource sector,
  • food per capita (FPC) from the Agriculture sector,
  • industrial output per capita (IOPC) from the Capital sector,
  • index of persistent pollution (PPOLX) from the Persistent Pollution sector.

How to tune your own simulation

One simulation requires a script with the following steps:

from pyworld3 import World3

world3 = World3()                    # choose the time limits and step.
world3.init_world3_constants()       # choose the model constants.
world3.init_world3_variables()       # initialize all variables.
world3.set_world3_table_functions()  # get tables from a json file.
world3.set_world3_delay_functions()  # initialize delay functions.
world3.run_world3()

You should be able to tune your own simulations quite quickly as long as you want to modify:

  • time-related parameters during the instantiation,
  • constants with the init_world3_constants method,
  • nonlinear functions by editing your modified tables ./your_modified_tables.json based on the initial json file pyworld3/functions_table_world3.json and calling world3.set_world3_table_functions("./your_modified_tables.json").

Licence

The project is under the CeCILL 2.1 licence, a GPL-like licence compatible with international and French laws. See the terms for more details.

How to cite PyWorld3 with Bibtex

To cite the project in your paper via BibTex:

@softwareversion{vanwynsberghe:hal-03414394v1,
  TITLE = {{PyWorld3 - The World3 model revisited in Python}},
  AUTHOR = {Vanwynsberghe, Charles},
  URL = {https://hal.archives-ouvertes.fr/hal-03414394},
  YEAR = {2021},
  MONTH = Nov,
  SWHID = {swh:1:dir:9d4ad7aec99385fa4d5057dece7a989d8892d866;origin=https://hal.archives-ouvertes.fr/hal-03414394;visit=swh:1:snp:be7d9ffa2c1be6920d774d1f193e49ada725ea5e;anchor=swh:1:rev:da5e3732d9d832734232d88ea33af99ab8987d52;path=/},
  LICENSE = {CeCILL Free Software License Agreement v2.1},
  HAL_ID = {hal-03414394},
}

References and acknowledgment

  • Meadows, Dennis L., William W. Behrens, Donella H. Meadows, Roger F. Naill, Jørgen Randers, and Erich Zahn. Dynamics of Growth in a Finite World. Cambridge, MA: Wright-Allen Press, 1974.
  • Meadows, Donella H., Dennis L. Meadows, Jorgen Randers, and William W. Behrens. The Limits to Growth. New York 102, no. 1972 (1972): 27.
  • Markowich, P. Sensitivity Analysis of Tech 1-A Systems Dynamics Model for Technological Shift, (1979).
Comments
  • No output files using

    No output files using "example_world3_standard.py"

    Hello,

    I try your script. I can't find the "fig_world3_standard_x.pdf" files anywhere after using "example_world3_standard.py".

    I'm not confortable with Python, so may be I don't use the script properly.

    Regards.

    bug good first issue 
    opened by 012abcd 9
  • Missing requirement for cbr in Population

    Missing requirement for cbr in Population

        @requires(["cbr"], ["pop"])
        def _update_cbr(self, k, jk):
            """
            From step k requires: POP
            """
            self.cbr[k] = 1000 * self.b[jk] / self.pop[k]
    

    I believe the function _update_cbr in the Population class is missing the requirement for the birth rate

    opened by iancostalves 1
  • 29th order

    29th order

    Hi, I believe the 29th order in the README is a bit misleading.. The word order is used for the order of the differential equation, not the number of state variables. I believe the highest DE order of world3 is three.

    https://pure.tue.nl/ws/files/3428351/79372.pdf

    opened by burakbayramli 0
  • Improved usability with Bokeh

    Improved usability with Bokeh

    I'm not sure this is an upstream consideration or a sub-project so I wanted to raise it here.

    This model should lend itself quite well to a bokeh model (https://bokeh.org) allowing live adjustment of the input variables and the enabling and disabling of particular plots and other functionality. I may attempt to wrap something up if I get some time as I don't expect it to be too difficult.

    opened by klattimer 4
  • Additional time series data

    Additional time series data

    Immediately it becomes obvious that global temperature and sea levels should be plotted, but also population density, and energy consumption. This would suggest the possibility of tools to prepare and overlay any time-series data set.

    opened by klattimer 0
  • Adding a plot of the historic population

    Adding a plot of the historic population

    Hello, Thank you for making this python version of world3. I think it would be useful to add a option in order to plot the historic population next to the predicted population. Would you mind if I add an option to do so and prepare a pull request ? Best, A. below a draft (historic population in purple) draft :

    opened by alan-man 4
Releases(v1.1)
Owner
Charles Vanwynsberghe
Associate professor
Charles Vanwynsberghe
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema

27 Dec 22, 2022
Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you

Eliyar Eziz 2.3k Dec 29, 2022
Source code of the "Graph-Bert: Only Attention is Needed for Learning Graph Representations" paper

Graph-Bert Source code of "Graph-Bert: Only Attention is Needed for Learning Graph Representations". Please check the script.py as the entry point. We

14 Mar 25, 2022
Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch

N-Grammer - Pytorch Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch Install $ pip install n-grammer-pytorch Usage

Phil Wang 66 Dec 29, 2022
Fine-tune GPT-3 with a Google Chat conversation history

Google Chat GPT-3 This repo will help you fine-tune GPT-3 with a Google Chat conversation history. The trained model will be able to converse as one o

Nate Baer 7 Dec 10, 2022
PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing

PhoNLP is a multi-task learning model for joint part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP prod

VinAI Research 109 Dec 02, 2022
Learning to Rewrite for Non-Autoregressive Neural Machine Translation

RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv

Xinwei Geng 20 Dec 25, 2022
2021 AI CUP Competition on Traditional Chinese Scene Text Recognition - Intermediate Contest

繁體中文場景文字辨識 程式碼說明 組別:這就是我 成員:蔣明憲 唐碩謙 黃玥菱 林冠霆 蕭靖騰 目錄 環境套件 安裝方式 資料夾布局 前處理-製作偵測訓練註解檔 前處理-製作分類訓練樣本 part.py : 從 json 裁切出分類訓練樣本 Class.py : 將切出來的樣本按照文字分類到各資料夾

HuanyueTW 3 Jan 14, 2022
The training code for the 4th place model at MDX 2021 leaderboard A.

The training code for the 4th place model at MDX 2021 leaderboard A.

Chin-Yun Yu 32 Dec 18, 2022
Generate text line images for training deep learning OCR model (e.g. CRNN)

Generate text line images for training deep learning OCR model (e.g. CRNN)

532 Jan 06, 2023
This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

About spellchecker.py Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levensht

Raihan Ahmed 1 Dec 11, 2021
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch

Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch. Topics: Face detection with Detectron 2, Time Series anomaly detection with LSTM Autoenc

Venelin Valkov 1.8k Dec 31, 2022
Scikit-learn style model finetuning for NLP

Scikit-learn style model finetuning for NLP Finetune is a library that allows users to leverage state-of-the-art pretrained NLP models for a wide vari

indico 665 Dec 17, 2022
This repository contains data used in the NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deployment in Text to Speech Systems

Proteno This is the data release associated with the corresponding NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deploymen

37 Dec 04, 2022
SentimentArcs: a large ensemble of dozens of sentiment analysis models to analyze emotion in text over time

SentimentArcs - Emotion in Text An end-to-end pipeline based on Jupyter notebooks to detect, extract, process and anlayze emotion over time in text. E

jon_chun 14 Dec 19, 2022
Guide to using pre-trained large language models of source code

Large Models of Source Code I occasionally train and publicly release large neural language models on programs, including PolyCoder. Here, I describe

Vincent Hellendoorn 947 Dec 28, 2022
Tools to download and cleanup Common Crawl data

cc_net Tools to download and clean Common Crawl as introduced in our paper CCNet. If you found these resources useful, please consider citing: @inproc

Meta Research 483 Jan 02, 2023
An extensive UI tool built using new data scraped from BBC News

BBC-News-Analyzer An extensive UI tool built using new data scraped from BBC New

Antoreep Jana 1 Dec 31, 2021
CCF BDCI 2020 房产行业聊天问答匹配赛道 A榜47/2985

CCF BDCI 2020 房产行业聊天问答匹配 A榜47/2985 赛题描述详见:https://www.datafountain.cn/competitions/474 文件说明 data: 存放训练数据和测试数据以及预处理代码 model_bert.py: 网络模型结构定义 adv_train

shuo 40 Sep 28, 2022
Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models

PEGASUS library Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models, or PEGASUS, uses self-supervised

Google Research 1.4k Dec 22, 2022