Xeasy-ml is a packaged machine learning framework.

Overview

xeasy-ml

1. What is xeasy-ml

Xeasy-ml is a packaged machine learning framework. It allows a beginner to quickly build a machine learning model and use the model to process and analyze his own data. At the same time, we have also realized the automatic analysis of data. During data processing, xeasy-ml will automatically draw data box plots, distribution histograms, etc., and perform feature correlation analysis to help users quickly discover the value of data.

2.Installation

Dependencies

xeasy-ml requires:

Scikit-learn >= 0.24.1

Pandas >= 0.24.2

Numppy >= 1.19.5

Matplotlib >= 3.3.4

Pydotplus >= 2.0.2

Xgboost >= 1.4.2

User installation

pip install xeasy-ml

3. Quick Start

1.Create a new project

Create a new python file named pro_init.py to initialize the project.

from xeasy_ml.project_init.create_new_demo import create_project
import os

pro_path = os.getcwd()
create_project(pro_path)

Now you can see the following file structure in your project.

├── Your_project
     ...
│   ├── pro_init.py
│   ├── project
│   │   └── your_project

2.Run example

cd project/your_project

python __main__.py

3.View Results

cd project/your_project_name/result/v1
ls -l
├── box   (Box plot)
├── cross_predict.txt (Cross-validation prediction file)
├── cross.txt  (Cross validation effect evaluation)
├── deleted_feature.txt  (Features that need to be deleted)
├── demo_feature_weight.txt  (Feature weights)
├── demo.m   (Model)
├── feature_with_feature  (Feature similarity)
├── feature_with_label   (Similarity between feature and label )
├── hist    (Distribution histogram)
├── model
├── predict_result.txt  (Test set prediction results)
└── test_score.txt      (Score on the test set)


xeasy-ml中文文档

1. 简介

​ xeasy-ml是一个封装的机器学习框架。它允许初学者快速建立机器学习模型,并使用该模型处理和分析自己的数据。同时,还实现了数据的自动分析。在数据处理过程中,xeasy-ml会自动绘制数据的箱线图、分布直方图等,并进行特征相关性分析,帮助用户快速发现数据的价值。

2.安装

依赖包:

Scikit-learn >= 0.24.1
Pandas >= 0.24.2
Numppy >= 1.19.5
Matplotlib >= 3.3.4
Pydotplus >= 2.0.2
Xgboost >= 1.4.2

​ 安装:

pip install xeasy-ml

3.如何使用

1.创建自己的项目

#创建一个名为pro_init.py的新python文件来初始化项目。
from xeasy_ml.project_init.create_new_demo import create_project
import os
pro_path = os.getcwd()
create_project(pro_path)
#在pro_init.py同级目录下可以看到以下目录结构:
├── Your_project
 	 ...
	├── pro_init.py
	├── project
	│  └── your_project

2.运行

cd project/your_project
python __main__.py

3.查看结果

cd project/your_project_name/result/v1
ls -l

  ├── box  (箱线图)

  ├── cross_predict.txt (交叉验证预测文件)

  ├── cross.txt (交叉验证评估)

  ├── deleted_feature.txt (需要被删除的特征)

  ├── demo_feature_weight.txt (模型特征权重)

  ├── demo.m  (保存的模型文件)

  ├── feature_with_feature (特征相似度)

  ├── feature_with_label  (特征与标签相似度)

  ├── hist  (分布直方图)

  ├── model

  ├── predict_result.txt (测试集预测结果)

  └── test_score.txt   (测试集评价指标得分)

4.线上使用手册

​ 假设你已经按照3.1的指引生成了你的个人项目文件夹,文件的目录结构为:

|———— Your_project
 	 ...
	| |———— pro_init.py
	| |———— project
	| |	└──your_project
	| |	   └──config
	| |	      └──demo
	| |		 └──ml.conf
	| |		 └──model.conf
	| |		 ...
	| |	      |——log.conf
	| |	   |——data
	| |	      └──sample.txt
	| |        |——log
	| |        |——result
	| |        |——__main__.py									

1.训练

​ 上述project结构中,config文件夹下为模型配置文件和日志配置文件;data为训练集;log是训练过程储存日志的文件夹,你可以在这里查看你的模型运行日志;result用于储存模型运行过程产生的数据分析资料,模型文件等;

​ 训练时,你可以根据自己的任务对配置文件进行调整,数据需存放在data文件夹下;模型训练和预测的结果在result内;加入你已经完成了模型的训练过程,你最需要关注的是result下的变化,其中最重要的是model文件下的demo.m,这是模型训练后的储存文件。

|——result
   |——v1
      |——box
      |——hist
      |——model

2.工程预测

​ 线上使用xeasy-ml时,你需要准备三个文件:demo.m , log.conf 和feature_enginnering.conf;在完成训练步骤后,你可以在project文件夹下找到它们;将这三个文件放在你的工程目录下,接着你需要做的就是写出你自己的predict.py(或者调用xeasy-ml.predict()方法,传入上述三个参数),这个文件包括xeasy-ml中的prediction_ml.PredictionML类用以初始化模型,PredictionML(config=conf, xeasy_log_path = xeasy_log_path)有两个参数:config是用于模型初始化的文件,easy_log_path是模型的日志配置文件;这里有个要注意的地方是我们可以根据自己的需要决定是否传入模型的配置文件(训练中的ml.conf)文件的作用是根据配置信息初始化模型(包括数据处理等),如果执行这一步操作,你需要在与启动文件相同目录下添加’./config/demo/model.conf‘和'’./config/demo/feature_enginnering.conf‘';需要注意的是ml.conf和model.conf的参数调整

self.ml = xml.prediction_ml.PredictionML(config = 'your ml.conf path', xeasy_log_path=xeasy_log_path)

如果只是使用XGBClassifier模型,不需要传入模型初始化文件,也不需要额外建立’./config/demo/model.conf‘文件目录;仅传入日志配置文件即可,但是需要自定义数据处理,代码形式如下:

self.ml = xml.prediction_ml.PredictionML(xeasy_log_path=xeasy_log_path)
self.ml._model = XGBClassifier()
self.ml._model.load_model(model_path)

self.ml._feature_processor = xml.data_processor.DataProcessor(conf=ml_config, log_path=xeasy_log_path)
self.ml._feature_processor.init()

以上步骤是线上模型的两种初始化方式;初始化后,对预测数据进行预测前需要进行数据处理,例:

self.ml._feature_processor.test_data = data_frame
self.ml._feature_processor.execute()
# 测试数据
test_feature = self.ml._feature_processor.test_data_feature.astype("float64", errors='ignore')
# 预测结果
predict_res = self.ml._model.predict(test_feature)
Hierarchical Time Series Forecasting using Prophet

htsprophet Hierarchical Time Series Forecasting using Prophet Credit to Rob J. Hyndman and research partners as much of the code was developed with th

Collin Rooney 131 Dec 02, 2022
Reggy - Regressions with arbitrarily complex regularization terms

reggy Regressions with arbitrarily complex regularization terms. Currently suppo

Kim 1 Jan 20, 2022
Code base of KU AIRS: SPARK Autonomous Vehicle Team

KU AIRS: SPARK Autonomous Vehicle Project Check this link for the blog post describing this project and the video of SPARK in simulation and on parkou

Mehmet Enes Erciyes 1 Nov 23, 2021
🌊 River is a Python library for online machine learning.

River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition is to be the go-to library for doing machine learning on strea

OnlineML 4k Jan 03, 2023
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
Fast Fourier Transform-accelerated Interpolation-based t-SNE (FIt-SNE)

FFT-accelerated Interpolation-based t-SNE (FIt-SNE) Introduction t-Stochastic Neighborhood Embedding (t-SNE) is a highly successful method for dimensi

Kluger Lab 547 Dec 21, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 05, 2023
ml4ir: Machine Learning for Information Retrieval

ml4ir: Machine Learning for Information Retrieval | changelog Quickstart → ml4ir Read the Docs | ml4ir pypi | python ReadMe ml4ir is an open source li

Salesforce 77 Jan 06, 2023
A linear regression model for house price prediction

Linear_Regression_Model A linear regression model for house price prediction. This code is using these packages, so please make sure your have install

ShawnWang 1 Nov 29, 2021
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Learn Machine Learning Algorithms by doing projects in Python and R Programming Language

Learn Machine Learning Algorithms by doing projects in Python and R Programming Language. This repo covers all aspect of Machine Learning Algorithms.

Ravi Chaubey 6 Oct 20, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

SUN Group @ UMN 28 Aug 03, 2022
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

23.3k Dec 31, 2022
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

Generator of Rad Names from Decent Paper Acronyms

264 Nov 08, 2022
Gaussian Process Optimization using GPy

End of maintenance for GPyOpt Dear GPyOpt community! We would like to acknowledge the obvious. The core team of GPyOpt has moved on, and over the past

Sheffield Machine Learning Software 847 Dec 19, 2022
Evidently helps analyze machine learning models during validation or production monitoring

Evidently helps analyze machine learning models during validation or production monitoring. The tool generates interactive visual reports and JSON profiles from pandas DataFrame or csv files. Current

Evidently AI 3.1k Jan 07, 2023
A simple python program which predicts the success of a movie based on it's type, actor, actress and director

Movie-Success-Prediction A simple python program which predicts the success of a movie based on it's type, actor, actress and director. The program us

Mahalinga Prasad R N 1 Dec 17, 2021
Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Oracle 95 Dec 28, 2022
Solve automatic numerical differentiation problems in one or more variables.

numdifftools The numdifftools library is a suite of tools written in _Python to solve automatic numerical differentiation problems in one or more vari

Per A. Brodtkorb 181 Dec 16, 2022