Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Overview

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Overview

This project is a Torch implementation for our CVPR 2016 paper, which performs jointly unsupervised learning of deep CNN and image clusters. The intuition behind this is that better image representation will facilitate clustering, while better clustering results will help representation learning. Given a unlabeled dataset, it will iteratively learn CNN parameters unsupervisedly and cluster images.

Disclaimer

This is a torch version reimplementation to the code used in our CVPR paper. There is a slight difference between the code used to report the results in our paper. The Caffe version code can be found here.

License

This code is released under the MIT License (refer to the LICENSE file for details).

Citation

If you find our code is useful in your researches, please consider citing:

@inproceedings{yangCVPR2016joint,
    Author = {Yang, Jianwei and Parikh, Devi and Batra, Dhruv},
    Title = {Joint Unsupervised Learning of Deep Representations and Image Clusters},
    Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    Year = {2016}
}

Dependencies

  1. Torch. Install Torch by:

    $ curl -s https://raw.githubusercontent.com/torch/ezinstall/master/install-deps | bash
    $ git clone https://github.com/torch/distro.git ~/torch --recursive
    $ cd ~/torch; 
    $ ./install.sh      # and enter "yes" at the end to modify your bashrc
    $ source ~/.bashrc

    After installing torch, you may also need install some packages using LuaRocks:

    $ luarocks install nn
    $ luarocks install image 

    It is preferred to run the code on GPU. Thus you need to install cunn:

    $ luarocks install cunn
  2. lua-knn. It is used to compute the distance between neighbor samples. Go into the folder, and then compile it with:

    $ luarocks make

Typically, you can run our code after installing the above two packages. Please let me know if error occurs.

Installation Using Nvidia-Docker

  1. Run docker build -t .
  2. Run nvidia-docker run -it /bin/bash

Train model

  1. It is very simple to run the code for training model. For example, if you want to train on USPS dataset, you can run:

    $ th train.lua -dataset USPS -eta 0.9

    Note that it runs on fast mode by default. You can change it to regular mode by setting "-use_fast 0". In the above command, eta is the unfolding rate. For face dataset, we recommand 0.2, while for other datasets, it is set to 0.9 to save training time. During training, you will see the normalize mutual information (NMI) for the clustering results.

  2. You can train multiple models in parallel by:

    $ th train.lua -dataset USPS -eta 0.9 -num_nets 5

    By this way, you weill get 5 different models, and thus 5 possible different results. Statistics such as mean and stddev can be computed on these results.

  3. You can also get the clustering performance when using raw image data and random CNN by

    $ th train.lua -dataset USPS -eta 0.9 -updateCNN 0
  4. You can also change other hyper parameters for model training, such as K_s, K_c, number of epochs in each partial unrolled period, etc.

Datasets

We upload six small datasets: COIL-20, USPS, MNIST-test, CMU-PIE, FRGC, UMist. The other large datasets, COIL-100, MNIST-full and YTF can be found in my google drive here.

Train on your own datasets

Alternatively, you can train the model on your own dataset. As preparations, you need:

  1. Create a hdf5 file with size of NxCxHxW, where N is the total number of images, C is the number of channels, H is the height of image, and W the width of image. Then move it to datasets/dataset_name/data4torch.h5

  2. Create a lua file to define the network architecture for your dataset. Put it in models_def/dataset_name.lua.

  3. Afterwards, you can run train.lua by specifying the dataset name as your own dataset. That's it!

Compared Approaches

We upload the code for the compared approaches in matlab folder. Please refer to the original paper for details and cite them properly. In this foler, we also attach the evaluation code for two metric: normalized mutual information (NMI) and clustering accuracy (AC).

Q&A

You are welcome to send message to (jw2yang at vt.edu) if you have any issue on this code.

Owner
Jianwei Yang
Senior Researcher @ Microsoft
Jianwei Yang
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
Efficient Training of Visual Transformers with Small Datasets

Official codes for "Efficient Training of Visual Transformers with Small Datasets", NerIPS 2021.

Yahui Liu 112 Dec 25, 2022
Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics

Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a

117 Nov 05, 2022
mmfewshot is an open source few shot learning toolbox based on PyTorch

OpenMMLab FewShot Learning Toolbox and Benchmark

OpenMMLab 514 Dec 28, 2022
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages

OCR-Streamlit-App OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages OCR app gets an image a

Siva Prakash 5 Apr 05, 2022
SphereFace: Deep Hypersphere Embedding for Face Recognition

SphereFace: Deep Hypersphere Embedding for Face Recognition By Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj and Le Song License SphereFa

Weiyang Liu 1.5k Dec 29, 2022
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

Kai Ninomiya 5 Jul 18, 2022