coldcuts is an R package to automatically generate and plot segmentation drawings in R

Overview

R-CMD-check

coldcuts

coldcuts is an R package that allows you to draw and plot automatically segmentations from 3D voxel arrays.

The name is inspired by one of Italy's best products.

🎓 You can find the documentation and a tutorial to get started at the package's page: https://langleylab.github.io/coldcuts

🗂 You can find additional segmentation files, ontologies and other information at https://langleylab.github.io/coldcuts/articles/segmentations.html

📄 You can read the preprint on arXiv at https://arxiv.org/abs/2201.10116

Citation

If you use coldcuts in your research, cite the preprint:

Giuseppe D'Agostino and Sarah Langley, Automated brain parcellation rendering and visualization in R with coldcuts, arXiv 2022, arXiv:2201.10116

Motivation

When dealing with neuroimaging data, or any other type of numerical data derived from brain tissues, it is important to situate it in its anatomical and structural context. Various authors provide parcellations or segmentations of the brain, according to their best interpretation of which functional and anatomical boundaries make sense for our understanding of the brain. There are several stand-alone tools that allow to visualize and manipulate segmentations. However, neuroimaging data, together with other functional data such as transcriptomics, is often manipulated in a statistical programming language such as R which does not have trivial implementations for the visualization of segmentations.

To bridge this gap, some R packages have been recently published:

  • ggseg by Athanasia Mo Mowinckel and Didac Vidal-Piñeiro
  • cerebroViz by Ethan Bahl, Tanner Koomar, and Jacob J Michaelson
  • fsbrain by Tim Schäfer and Christine Ecker

ggseg and cerebroviz offer 2D (and 3D in the case of ggseg3d) visualizations of human brain segmentations, with the possibility of integration with external datasets. These segmentations are manually curated, which means that new datasets must be manually inserted, and they are limited to the human brain in scope. ggseg in particular has made available several segmentations of human cortical surface atlases. fsbrain focuses on 3D visualization of human MRI data with external data integration and visualization in both native space and transformed spaces. It does not depend on manually curated datastes (beyond segmentations).

While these tools provide a wealth of beautiful visualization interfaces, we felt the need to implement a tool to systematically create 2D (and potentially 3D) objects that are easily shared and manipulated in R, with the addition of labels, external datasets and simple operations such as subsetting and projecting, with minimal need for manual curation and without limiting ourselves to a particular species.

Thus, coldcuts is our attempt at bridging the gap between imaging/high throughput brain data and R through data visualization.

Installing the package

⬇️ You can install this package using devtools::install_github():

devtools::install_github("langleylab/coldcuts")

Nota bene: coldcuts uses smoothr to smooth 2D polygons. This package requires the installation of terra which has some system dependencies for spatial data, such as GDAL, GEOS and PROJ that can sometimes be difficult to install, especially in machines on which you do not have admin rights.

One possible workaround when you do not have admin rights is to use conda virtual environments to install GDAL and other libraries using the conda-forge channel: link

Getting started

🏃🏽‍♀️ You can find a small example to get started here

Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
NumQMBasic - A mini-course offered to Undergrad physics students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 35 Dec 05, 2022
[WACV 2022] Contextual Gradient Scaling for Few-Shot Learning

CxGrad - Official PyTorch Implementation Contextual Gradient Scaling for Few-Shot Learning Sanghyuk Lee, Seunghyun Lee, and Byung Cheol Song In WACV 2

Sanghyuk Lee 4 Dec 05, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
Orthogonal Over-Parameterized Training

The inductive bias of a neural network is largely determined by the architecture and the training algorithm. To achieve good generalization, how to effectively train a neural network is of great impo

Weiyang Liu 11 Apr 18, 2022
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
Large dataset storage format for Pytorch

H5Record Large dataset ( 100G, = 1T) storage format for Pytorch (wip) Support python 3 pip install h5record Why? Writing large dataset is still a

theblackcat102 43 Oct 22, 2022
🎯 A comprehensive gradient-free optimization framework written in Python

Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not

Devin Soni 565 Dec 26, 2022
An Unsupervised Detection Framework for Chinese Jargons in the Darknet

An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of 《An Unsupervised Detection Framewor

7 Nov 08, 2022
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
Project for tracking occupancy in Tel-Aviv parking lots.

Ahuzat Dibuk - Tracking occupancy in Tel-Aviv parking lots main.py This module was set-up to be executed on Google Cloud Platform. I run it every 15 m

Geva Kipper 35 Nov 22, 2022
Apollo optimizer in tensorflow

Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea

Evan Walters 1 Nov 09, 2021
Object Tracking and Detection Using OpenCV

Object tracking is one such application of computer vision where an object is detected in a video, otherwise interpreted as a set of frames, and the object’s trajectory is estimated. For instance, yo

Happy N. Monday 4 Aug 21, 2022
Code release for SLIP Self-supervision meets Language-Image Pre-training

SLIP: Self-supervision meets Language-Image Pre-training What you can find in this repo: Pre-trained models (with ViT-Small, Base, Large) and code to

Meta Research 621 Dec 31, 2022
Source code for "OmniPhotos: Casual 360° VR Photography"

OmniPhotos: Casual 360° VR Photography Project Page | Video | Paper | Demo | Data This repository contains the source code for creating and viewing Om

Christian Richardt 144 Dec 30, 2022
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
Fake News Detection Using Machine Learning Methods

Fake-News-Detection-Using-Machine-Learning-Methods Fake news is always a real and dangerous issue. However, with the presence and abundance of various

Achraf Safsafi 1 Jan 11, 2022