EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

Related tags

Deep LearningEdMIPS
Overview

EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

by Zhaowei Cai, and Nuno Vasconcelos.

This implementation is written by Zhaowei Cai at UC San Diego.

Introduction

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network architectures, including ResNet, GoogLeNet, and Inception-V3. More details can be found in the paper.

Citation

If you use our code/model/data, please cite our paper:

@inproceedings{cai20edmips,
  author = {Zhaowei Cai and Nuno Vasconcelos},
  Title = {Rethinking Differentiable Search for Mixed-Precision Neural Networks},
  booktitle = {CVPR},
  Year  = {2020}
}

Installation

  1. Install PyTorch and ImageNet dataset following the official PyTorch ImageNet training code.

  2. Clone the EdMIPS repository, and we'll call the directory that you cloned EdMIPS into EdMIPS_ROOT

    git clone https://github.com/zhaoweicai/EdMIPS.git
    cd EdMIPS_ROOT/

Searching the Mixed-precision Network with EdMIPS

You can start training EdMIPS. Take ResNet-18 for example.

python search.py \
  -a mixres18_w1234a234 --epochs 25 --step-epoch 10 --lr 0.1 --lra 0.01 --cd 0.00335 -j 16 \
  [your imagenet-folder with train and val folders]

The other network architectures are also available, including ResNet-50, GoogLeNet and Inception-V3.

Training the Searched Mixed-precision Network

After the EdMIPS searching is finished, with the checkpoint arch_checkpoint.pth.tar, you can start to train the classification model with the learned bit allocation.

python main.py \
  -a quantres18_cfg --epochs 95 --step-epoch 30 -j 16 \
  --ac arch_checkpoint.pth.tar \
  [your imagenet-folder with train and val folders]

Results

The results are shown as following:

network precision bit --cd top-1/5 acc. model
ResNet-18 uniform 2.0 65.1/86.2 download
ResNet-18 mixed 1.992 0.00335 65.9/86.5 download
ResNet-50 uniform 2.0 70.6/89.8 download
ResNet-50 mixed 2.007 0.00015 72.1/90.6 download
GoogleNet uniform 2.0 64.8/86.3 download
GoogleNet mixed 1.994 0.00045 67.8/88.0 download
Inception-V3 uniform 2.0 71.0/89.9 download
Inception-V3 mixed 1.982 0.0015 72.4/90.7 download

Disclaimer

  1. The training of EdMIPS has some variance. Tune --cd a little bit to get the optimal bit allocation you want.

  2. The BitOps are counted only on the quantized layers. They are normalized to the bit space as in the above table.

  3. Since some changes have been made after the paper submission, you may get slightly worse performances (0.1~0.2 points) than those in the paper.

If you encounter any issue when using our code/model, please let me know.

Owner
Zhaowei Cai
Zhaowei Cai
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
CLOOB training (JAX) and inference (JAX and PyTorch)

cloob-training Pretrained models There are two pretrained CLOOB models in this repo at the moment, a 16 epoch and a 32 epoch ViT-B/16 checkpoint train

Katherine Crowson 64 Nov 27, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
An unofficial styleguide and best practices summary for PyTorch

A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a

IgorSusmelj 1.5k Jan 05, 2023
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
UT-Sarulab MOS prediction system using SSL models

UTMOS: UTokyo-SaruLab MOS Prediction System Official implementation of "UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022" submitted to INTERSP

sarulab-speech 58 Nov 22, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
JAXDL: JAX (Flax) Deep Learning Library

JAXDL: JAX (Flax) Deep Learning Library Simple and clean JAX/Flax deep learning algorithm implementations: Soft-Actor-Critic (arXiv:1812.05905) Transf

Patrick Hart 4 Nov 27, 2022
A framework to train language models to learn invariant representations.

Invariant Language Modeling Implementation of the training for invariant language models. Motivation Modern pretrained language models are critical co

6 Nov 16, 2022
Visualizing lattice vibration information from phonon dispersion to atoms (For GPUMD)

Phonon-Vibration-Viewer (For GPUMD) Visualizing lattice vibration information from phonon dispersion for primitive atoms. In this tutorial, we will in

Liangting 6 Dec 10, 2022
Tello Drone Trajectory Tracking

With this library you can track the trajectory of your tello drone or swarm of drones in real time.

Kamran Asgarov 2 Oct 12, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022