当前位置:网站首页>deep learning object detection 精选
deep learning object detection 精选
2022-04-22 05:44:00 【弥川】
deep learning object detection
Paper list from 2014 to 2019

Milestones


Object detector composed parts
- Input: Image, Patches, Image Pyramid
- Backbones: VGG16, ResNet-50, SpineNet, EfficientNet-B0/B7 , CSPResNeXt50, CSPDarknet53
- Neck:
- Additional blocks: SPP, ASPP, RFB, SAM
- Path-aggregation blocks: FPN, PAN, NAS-FPN, Fully-connected FPN, BiFPN, ASFF, SFAM
- Heads:
- Dense Prediction (one-stage):
- RPN, SSD, YOLO, RetinaNet (anchor based)
- CornerNet, CenterNet, MatrixNet, FCOS (anchor free)
- Sparse Prediction (two-stage):
- Faster R-CNN, R-FCN, Mask R-CNN (anchor based)
- RepPoints (anchor free)
- Dense Prediction (one-stage):
Detection methods category

Object detection steps
One-Stage
-
Extracts feature on all area of image, classify the objects,
localize bounding-box
Two-Stage
-
Generates category-independent region proposals,
extracts feature vector from each region proposal
-
Classify the objects, precisely bounding-box prediction (NMS)
Small object detection tricks
-
Framework for small object detection
- Multi-scale Feature Learning

-
Enhance the Receptive Fields (visual attention mechanisms)
-
Data Augmentation
- GAN-based Detection
- Flipping, cropping, rotating, scaling
-
Training Strategy
- Unsupervised object detection
- Weakly Supervised Object Detection
- Multi-Scale Training/Val/Test
- GPU accelerate
-
Context-based Detection
- Local context
- Global context
- Context interactive
-
Neural Architecture Search
- Stacking more pyramid networks
- Adding feature dimension
- Adopting high capacity architecture
-
Efficient post-processing methods
- Non maximum suppression (NMS)
- Soft-NMS
-
Deformable convolutional networks
-
Multi-task joint learning and optimization
- Object detection
- Semantic segmentation
- Instance segmentation
- Edge detection
- Highlight detection
-
Establish small object datasets
Performance table
FPS(Speed) index is related to the hardware spec(e.g. CPU, GPU, RAM, etc), so it is hard to make an equal comparison. The solution is to measure the performance of all models on hardware with equivalent specifications, but it is very difficult and time consuming.
| Detector | COCO (mAP@IoU=0.5:0.95) | Published In |
|---|---|---|
| R-CNN | - | CVPR’14 |
| Fast R-CNN | 19.7 | ICCV’15 |
| Faster R-CNN | 21.9 | NIPS’15 |
| YOLO v1 | - | CVPR’16 |
| SSD | 31.2 | ECCV’16 |
| R-FCN | 29.9 | NIPS’16 |
| FPN | 36.2 | CVPR’17 |
| YOLO v2 | - | CVPR’17 |
| RetinaNet | 39.1 | ICCV’17 |
| Mask R-CNN | 39.8 | ICCV’17 |
| Soft-NMS | 40.9 | ICCV’17 |
| YOLO v3 | 33.0 | arXiv’18 |
| RefineDet | 41.8 | CVPR’18 |
| Cascade R-CNN | 42.8 | CVPR’ 18 |
| RFBNet | - | ECCV’18 |
| Softer-NMS | - | arXiv’ 18 |
| SNIPER | 43.5 | NIPS’ 18 |
| M2Det | 44.2 | AAAI’19 |
| Libra R-CNN | 43.0 | CVPR’19 |
| FSAF | 44.6 | CVPR’19 |
| ExtremeNet | 43.7 | CVPR’19 |
| CenterNet | 45.1 | ICCV’19 |
| FreeAnchor | 44.8 | NeurIPS’19 |
| CBNet | 53.3 | AAAI’20 |
| YOLOv4 | - | arXiv’20 |
| ATSS | 50.7 | CVPR’ 20 |
| Hit-Detector | 41.4 | CVPR’ 20 |
| DetectoRS | 54.7 | arXiv’20 |
Performance on MS COCO



MS COCO detection evaluation metrics

2014
- [R-CNN] Rich feature hierarchies for accurate object detection and semantic segmentation | [CVPR’ 14] |
[pdf][official code - caffe]CNN
2015
-
[Fast R-CNN] Fast R-CNN | [ICCV’ 15] |
[pdf][official code - caffe]RoI -
[Faster R-CNN, RPN] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks | [NIPS’ 15] |
[pdf][official code - caffe][unofficial code - tensorflow][unofficial code - pytorch]Region Proposal Network (RPN)NMS
2016
-
[YOLO v1] You Only Look Once: Unified, Real-Time Object Detection | [CVPR’ 16] |
[pdf][official code - c]One-stage -
[SSD] SSD: Single Shot MultiBox Detector | [ECCV’ 16] |
[pdf][official code - caffe][unofficial code - tensorflow][unofficial code - pytorch]Multi-scale feature mapVGG16NMS -
[R-FCN] R-FCN: Object Detection via Region-based Fully Convolutional Networks | [NIPS’ 16] |
[pdf][official code - caffe][unofficial code - caffe]
2017
-
[FPN] Feature Pyramid Networks for Object Detection | [CVPR’ 17] |
[pdf][unofficial code - caffe]Feature Pyramid Networks -
[YOLO v2] YOLO9000: Better, Faster, Stronger | [CVPR’ 17] |
[pdf][official code - c][unofficial code - caffe][unofficial code - tensorflow][unofficial code - tensorflow][unofficial code - pytorch] -
[RetinaNet] Focal Loss for Dense Object Detection | [ICCV’ 17] |
[pdf][official code - keras][unofficial code - pytorch][unofficial code - mxnet][unofficial code - tensorflow]Focal Loss -
[Mask R-CNN] Mask R-CNN | [ICCV’ 17] |
[pdf][official code - caffe2][unofficial code - tensorflow][unofficial code - tensorflow][unofficial code - pytorch] -
[Soft-NMS] Improving Object Detection With One Line of Code | [ICCV’ 17] |
[pdf][official code - caffe]Soft-NMS
2018
-
[YOLO v3] YOLOv3: An Incremental Improvement | [arXiv’ 18] |
[pdf][official code - c][unofficial code - pytorch][unofficial code - pytorch][unofficial code - keras][unofficial code - tensorflow] -
[RefineDet] Single-Shot Refinement Neural Network for Object Detection | [CVPR’ 18] |
[pdf][official code - caffe][unofficial code - chainer][unofficial code - pytorch]Combine one-stage and two-stage -
[Cascade R-CNN] Cascade R-CNN: Delving into High Quality Object Detection | [CVPR’ 18] |
[pdf][official code - caffe]Training Strategy -
[RFBNet] Receptive Field Block Net for Accurate and Fast Object Detection | [ECCV’ 18] |
[pdf][official code - pytorch]Enhance the Receptive Fields -
[Softer-NMS] Softer-NMS: Rethinking Bounding Box Regression for Accurate Object Detection | [arXiv’ 18] |
[pdf]Soft-NMS -
[SNIPER] SNIPER: Efficient Multi-Scale Training | [NIPS’ 18] |
[pdf]Training Strategy
2019
-
[M2Det] M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network | [AAAI’ 19] |
[pdf][official code - pytorch]Multi-scale Feature Learning -
[Libra R-CNN] Libra R-CNN: Balanced Learning for Object Detection | [CVPR’ 19] |
[pdf]Training Strategy -
[FSAF] Feature Selective Anchor-Free Module for Single-Shot Object Detection | [CVPR’ 19] |
[pdf]Anchor-Free -
[ExtremeNet] Bottom-up Object Detection by Grouping Extreme and Center Points | [CVPR’ 19] |
[pdf]|[official code - pytorch]Instance Segmentation -
[CenterNet] CenterNet: Keypoint Triplets for Object Detection | [ICCV’ 19] |
[pdf]Keypoint-based detector -
[FreeAnchor] FreeAnchor: Learning to Match Anchors for Visual Object Detection | [NeurIPS’ 19] |
[pdf]Anchor-Free
2020
- [CBnet] Cbnet: A novel composite backbone network architecture for object detection | [AAAI’ 20] |
[pdf]Composite Backbone Network - [YOLOv4] YOLOv4: Optimal Speed and Accuracy of Object Detection | [arXiv’ 20] |
[pdf]- Input: Mosaic data augmentation, Cross mini-Batch Normalization (CmBN), Self-adversarial-training (SAT)
- BackBone: CSPDarknet53, Mish-activation, DropBlock regularization
- Neck: SPP block, PAN (path-aggregation block)
- Prediction: CIoU-loss, DIoU-NMS
- [ATSS] Bridging the Gap Between Anchor-Based and Anchor-Free Detection via Adaptive Training Sample Selection | [CVPR’ 20] |
[pdf]Anchor-BasedTraining Strategy - [Hit-Detector] Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection | [CVPR’ 20] |
[pdf]Neural Architecture Search - [DetectoRS] DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution | [arXiv’ 20] |
[pdf]Recursive Feature PyramidSwitchable Atrous ConvolutionInstance Segmentation
Survey
- Recent advances in small object detection based on deep learning: A review
[pdf] - A Survey of Deep Learning-based Object Detection
[pdf] - Object Detection in 20 Y ears: A Survey
[pdf] - Recent Advances in Deep Learning for Object Detection
[pdf]
Analyze Tools
版权声明
本文为[弥川]所创,转载请带上原文链接,感谢
https://blog.csdn.net/qq_41577017/article/details/115531818
边栏推荐
- Dlopen calls dynamic library
- opencv代码
- Speed measurement based on 51 single chip microcomputer and Hall sensor
- Chorme debugging tool
- Access problems after setting up the local server
- AD5724 双极性ADC
- 蓝桥杯嵌入式省赛第七届:模拟液位检测告警系统”
- Out range of signed 32bit display when compiling openssl-0.9.8e
- FILE写入数据到本地
- Jeecgboot Online form Development - control Configuration
猜你喜欢

AD5724 双极性ADC

AD5724 bipolar ADC

基于51单片机和霍尔传感器的测速

Daily learning records - reading custom data sets

Maximum continuous subsequence sum (enumeration + divide and conquer + online processing)

Setting time and date display of QT learning

STM32学习笔记1——最简单的GPIO

STM32 learning note 2 - set GPIO register to realize running water lamp

蓝桥杯嵌入式扩展板学习之光敏电阻

jeecgboot-online在线开发2
随机推荐
Chapter 86 leetcode refers to offer dynamic programming (III) maximum profit of stock
Developing Postgres custom function with C language
Part 85 leetcode sword refers to offer dynamic programming (II) frog jumping steps
堆的基本操作源代码bing
汇编 makefile
QT学习之设置时间日期显示
第88篇 LeetCode剑指Offer动态规划(五)礼物的最大值
Installation and use of cmake and cross tool compilation chain
Leetcode: Sword finger offer 29 Print the matrix clockwise
wgs84坐标转换,地图拾取wgs84坐标工具推荐
Error in QT: undefined reference to ` widget:: settime()‘
Add a minimize button to the CPropertySheet window
Blue Bridge Cup Sprint - DFS
Access problems after setting up the local server
chorme调试工具
AIX6. 1 compile OpenSSL
LeetCode: 322. Change exchange (dynamic programming, recursion, memo recursion and backtracking)
opencv代码
jeecgboot-online表单开发-控件配置
Ocilib library connected to Oracle