当前位置:网站首页>MATLAB小技巧(6)七种滤波方法比较
MATLAB小技巧(6)七种滤波方法比较
2022-04-23 18:05:00 【mozun2020】
MATLAB小技巧(6)七种滤波方法比较
前言
MATLAB进行图像处理相关的学习是非常友好的,可以从零开始,对基础的图像处理都已经有了封装好的许多可直接调用的函数,这个系列文章的话主要就是介绍一些大家在MATLAB中常用一些概念函数进行例程演示!
七种滤波方法分别为巴特沃斯低通滤波、FIR低通滤波、移动平均滤波、中值滤波、维纳滤波、自适应滤波、小波滤波。不同的滤波处理方式,对各种的噪声会有不同的侧重点,处理效果也各有不同。在本实验中自适应滤波方式得到的滤波效果较好。
一. MATLAB仿真
%****************************************************************************************
%
% 创建两个信号Mix_Signal_1 和信号 Mix_Signal_2
%
%***************************************************************************************
clc;clear;close;
Fs = 1000; %采样率
N = 1000; %采样点数
n = 0:N-1;
t = 0:1/Fs:1-1/Fs; %时间序列
Signal_Original_1 =sin(2*pi*10*t)+sin(2*pi*20*t)+sin(2*pi*30*t);
Noise_White_1 = [0.3*randn(1,500), rand(1,500)]; %前500点高斯分部白噪声,后500点均匀分布白噪声
Mix_Signal_1 = Signal_Original_1 + Noise_White_1; %构造的混合信号
Signal_Original_2 = [zeros(1,100), 20*ones(1,20), -2*ones(1,30), 5*ones(1,80), -5*ones(1,30), 9*ones(1,140), -4*ones(1,40), 3*ones(1,220), 12*ones(1,100), 5*ones(1,20), 25*ones(1,30), 7 *ones(1,190)];
Noise_White_2 = 0.5*randn(1,1000); %高斯白噪声
Mix_Signal_2 = Signal_Original_2 + Noise_White_2; %构造的混合信号
%****************************************************************************************
%
% 信号Mix_Signal_1 和 Mix_Signal_2 分别作巴特沃斯低通滤波。
%
%***************************************************************************************
%混合信号 Mix_Signal_1 巴特沃斯低通滤波
figure(1);
Wc=2*50/Fs; %截止频率 50Hz
[b,a]=butter(4,Wc);
Signal_Filter=filter(b,a,Mix_Signal_1);
subplot(4,1,1); %Mix_Signal_1 原始信号
plot(Mix_Signal_1);
axis([0,1000,-4,4]);
title('原始信号 ');
subplot(4,1,2); %Mix_Signal_1 低通滤波滤波后信号
plot(Signal_Filter);
axis([0,1000,-4,4]);
title('巴特沃斯低通滤波后信号');
%混合信号 Mix_Signal_2 巴特沃斯低通滤波
Wc=2*100/Fs; %截止频率 100Hz
[b,a]=butter(4,Wc);
Signal_Filter=filter(b,a,Mix_Signal_2);
subplot(4,1,3); %Mix_Signal_2 原始信号
plot(Mix_Signal_2);
axis([0,1000,-10,30]);
title('原始信号 ');
subplot(4,1,4); %Mix_Signal_2 低通滤波滤波后信号
plot(Signal_Filter);
axis([0,1000,-10,30]);
title('巴特沃斯低通滤波后信号');
%****************************************************************************************
%
% 信号Mix_Signal_1 和 Mix_Signal_2 分别作FIR低通滤波。
%
%***************************************************************************************
%混合信号 Mix_Signal_1 FIR低通滤波
figure(2);
F = [0:0.05:0.95];
A = [1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] ;
b = firls(20,F,A);
Signal_Filter = filter(b,1,Mix_Signal_1);
subplot(4,1,1); %Mix_Signal_1 原始信号
plot(Mix_Signal_1);
axis([0,1000,-4,4]);
title('原始信号 ');
subplot(4,1,2); %Mix_Signal_1 FIR低通滤波滤波后信号
plot(Signal_Filter);
axis([0,1000,-5,5]);
title('FIR低通滤波后的信号');
%混合信号 Mix_Signal_2 FIR低通滤波
F = [0:0.05:0.95];
A = [1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] ;
b = firls(20,F,A);
Signal_Filter = filter(b,1,Mix_Signal_2);
subplot(4,1,3); %Mix_Signal_2 原始信号
plot(Mix_Signal_2);
axis([0,1000,-10,30]);
title('原始信号 ');
subplot(4,1,4); %Mix_Signal_2 FIR低通滤波滤波后信号
plot(Signal_Filter);
axis([0,1000,-10,30]);
title('FIR低通滤波后的信号');
%****************************************************************************************
%
% 信号Mix_Signal_1 和 Mix_Signal_2 分别作移动平均滤波
%
%***************************************************************************************
%混合信号 Mix_Signal_1 移动平均滤波
figure(3);
b = [1 1 1 1 1 1]/6;
Signal_Filter = filter(b,1,Mix_Signal_1);
subplot(4,1,1); %Mix_Signal_1 原始信号
plot(Mix_Signal_1);
axis([0,1000,-4,4]);
title('原始信号 ');
subplot(4,1,2); %Mix_Signal_1 移动平均滤波后信号
plot(Signal_Filter);
axis([0,1000,-4,4]);
title('移动平均滤波后的信号');
%混合信号 Mix_Signal_2 移动平均滤波
b = [1 1 1 1 1 1]/6;
Signal_Filter = filter(b,1,Mix_Signal_2);
subplot(4,1,3); %Mix_Signal_2 原始信号
plot(Mix_Signal_2);
axis([0,1000,-10,30]);
title('原始信号 ');
subplot(4,1,4); %Mix_Signal_2 移动平均滤波后信号
plot(Signal_Filter);
axis([0,1000,-10,30]);
title('移动平均滤波后的信号');
%****************************************************************************************
%
% 信号Mix_Signal_1 和 Mix_Signal_2 分别作中值滤波
%
%***************************************************************************************
%混合信号 Mix_Signal_1 中值滤波
figure(4);
Signal_Filter=medfilt1(Mix_Signal_1,10);
subplot(4,1,1); %Mix_Signal_1 原始信号
plot(Mix_Signal_1);
axis([0,1000,-5,5]);
title('原始信号 ');
subplot(4,1,2); %Mix_Signal_1 中值滤波后信号
plot(Signal_Filter);
axis([0,1000,-5,5]);
title('中值滤波后的信号');
%混合信号 Mix_Signal_2 中值滤波
Signal_Filter=medfilt1(Mix_Signal_2,10);
subplot(4,1,3); %Mix_Signal_2 原始信号
plot(Mix_Signal_2);
axis([0,1000,-10,30]);
title('原始信号 ');
subplot(4,1,4); %Mix_Signal_2 中值滤波后信号
plot(Signal_Filter);
axis([0,1000,-10,30]);
title('中值滤波后的信号');
%****************************************************************************************
%
% 信号Mix_Signal_1 和 Mix_Signal_2 分别作维纳滤波
%
%***************************************************************************************
%混合信号 Mix_Signal_1 维纳滤波
figure(5);
Rxx=xcorr(Mix_Signal_1,Mix_Signal_1); %得到混合信号的自相关函数
M=100; %维纳滤波器阶数
for i=1:M %得到混合信号的自相关矩阵
for j=1:M
rxx(i,j)=Rxx(abs(j-i)+N);
end
end
Rxy=xcorr(Mix_Signal_1,Signal_Original_1); %得到混合信号和原信号的互相关函数
for i=1:M
rxy(i)=Rxy(i+N-1);
end %得到混合信号和原信号的互相关向量
h = inv(rxx)*rxy'; %得到所要涉及的wiener滤波器系数
Signal_Filter=filter(h,1, Mix_Signal_1); %将输入信号通过维纳滤波器
subplot(4,1,1); %Mix_Signal_1 原始信号
plot(Mix_Signal_1);
axis([0,1000,-5,5]);
title('原始信号 ');
subplot(4,1,2); %Mix_Signal_1 维纳滤波后信号
plot(Signal_Filter);
axis([0,1000,-5,5]);
title('维纳滤波后的信号');
%混合信号 Mix_Signal_2 维纳滤波
Rxx=xcorr(Mix_Signal_2,Mix_Signal_2); %得到混合信号的自相关函数
M=500; %维纳滤波器阶数
for i=1:M %得到混合信号的自相关矩阵
for j=1:M
rxx(i,j)=Rxx(abs(j-i)+N);
end
end
Rxy=xcorr(Mix_Signal_2,Signal_Original_2); %得到混合信号和原信号的互相关函数
for i=1:M
rxy(i)=Rxy(i+N-1);
end %得到混合信号和原信号的互相关向量
h=inv(rxx)*rxy'; %得到所要涉及的wiener滤波器系数
Signal_Filter=filter(h,1, Mix_Signal_2); %将输入信号通过维纳滤波器
subplot(4,1,3); %Mix_Signal_2 原始信号
plot(Mix_Signal_2);
axis([0,1000,-10,30]);
title('原始信号 ');
subplot(4,1,4); %Mix_Signal_2 维纳滤波后信号
plot(Signal_Filter);
axis([0,1000,-10,30]);
title('维纳滤波后的信号');
%****************************************************************************************
%
% 信号Mix_Signal_1 和 Mix_Signal_2 分别作自适应滤波
%
%***************************************************************************************
%混合信号 Mix_Signal_1 自适应滤波
figure(6);
N=1000; %输入信号抽样点数N
k=100; %时域抽头LMS算法滤波器阶数
u=0.001; %步长因子
%设置初值
yn_1=zeros(1,N); %output signal
yn_1(1:k)=Mix_Signal_1(1:k); %将输入信号SignalAddNoise的前k个值作为输出yn_1的前k个值
w=zeros(1,k); %设置抽头加权初值
e=zeros(1,N); %误差信号
%用LMS算法迭代滤波
for i=(k+1):N
XN=Mix_Signal_1((i-k+1):(i));
yn_1(i)=w*XN';
e(i)=Signal_Original_1(i)-yn_1(i);
w=w+2*u*e(i)*XN;
end
subplot(4,1,1);
plot(Mix_Signal_1); %Mix_Signal_1 原始信号
axis([k+1,1000,-4,4]);
title('原始信号');
subplot(4,1,2);
plot(yn_1); %Mix_Signal_1 自适应滤波后信号
axis([k+1,1000,-4,4]);
title('自适应滤波后信号');
%混合信号 Mix_Signal_2 自适应滤波
N=1000; %输入信号抽样点数N
k=500; %时域抽头LMS算法滤波器阶数
u=0.000011; %步长因子
%设置初值
yn_1=zeros(1,N); %output signal
yn_1(1:k)=Mix_Signal_2(1:k); %将输入信号SignalAddNoise的前k个值作为输出yn_1的前k个值
w=zeros(1,k); %设置抽头加权初值
e=zeros(1,N); %误差信号
%用LMS算法迭代滤波
for i=(k+1):N
XN=Mix_Signal_2((i-k+1):(i));
yn_1(i)=w*XN';
e(i)=Signal_Original_2(i)-yn_1(i);
w=w+2*u*e(i)*XN;
end
subplot(4,1,3);
plot(Mix_Signal_2); %Mix_Signal_1 原始信号
axis([k+1,1000,-10,30]);
title('原始信号');
subplot(4,1,4);
plot(yn_1); %Mix_Signal_1 自适应滤波后信号
axis([k+1,1000,-10,30]);
title('自适应滤波后信号');
%****************************************************************************************
%
% 信号Mix_Signal_1 和 Mix_Signal_2 分别作小波滤波
%
%***************************************************************************************
%混合信号 Mix_Signal_1 小波滤波
figure(7);
subplot(4,1,1);
plot(Mix_Signal_1); %Mix_Signal_1 原始信号
axis([0,1000,-5,5]);
title('原始信号 ');
subplot(4,1,2);
[xd,cxd,lxd] = wden(Mix_Signal_1,'sqtwolog','s','one',2,'db3');
plot(xd); %Mix_Signal_1 小波滤波后信号
axis([0,1000,-5,5]);
title('小波滤波后信号 ');
%混合信号 Mix_Signal_2 小波滤波
subplot(4,1,3);
plot(Mix_Signal_2); %Mix_Signal_2 原始信号
axis([0,1000,-10,30]);
title('原始信号 ');
subplot(4,1,4);
[xd,cxd,lxd] = wden(Mix_Signal_2,'sqtwolog','h','sln',3,'db3');
plot(xd); %Mix_Signal_2 小波滤波后信号
axis([0,1000,-10,30]);
title('小波滤波后信号 ');
二. 仿真结果
三. 小结
在本节的仿真中主要是处理添加噪声的样本进行滤波处理,后续会看情况,试采用真实带噪样本,例如带噪图片或者带噪语音进行滤波处理,对比各滤波方法的处理效果。每天学一个MATLAB小知识,大家一起来学习进步阿!
版权声明
本文为[mozun2020]所创,转载请带上原文链接,感谢
https://blog.csdn.net/sinat_34897952/article/details/124334993
边栏推荐
- What are the relationships and differences between threads and processes
- Docker 安装 Redis
- Transfer learning of five categories of pictures based on VGg
- Arcpy adds fields and loop assignments to vector data
- Halo open source project learning (II): entity classes and data tables
- Dock installation redis
- Pointers in rust: box, RC, cell, refcell
- Qt读写XML文件(含源码+注释)
- mysql自动启动设置用Systemctl start mysqld启动
- Queue solving Joseph problem
猜你喜欢
Re expression régulière
C# 网络相关操作
Go file operation
Go language JSON package usage
Closure type of rust (difference between FN, fnmut and fnone)
[UDS unified diagnostic service] v. diagnostic application example: Flash bootloader
cv_ Solution of mismatch between bridge and opencv
mysql自动启动设置用Systemctl start mysqld启动
Go对文件操作
Transfer learning of five categories of pictures based on VGg
随机推荐
C [file operation] read TXT text by line
Go对文件操作
Implementation of object detection case based on SSD
How to install jsonpath package
Crawl the product data of Xiaomi Youpin app
Laser slam theory and practice of dark blue College Chapter 3 laser radar distortion removal exercise
纳米技术+AI赋能蛋白质组学|珞米生命科技完成近千万美元融资
Queue solving Joseph problem
C network related operations
Closure type of rust (difference between FN, fnmut and fnone)
Submit local warehouse and synchronize code cloud warehouse
2022江西光伏展,中国分布式光伏展会,南昌太阳能利用展
Batch export ArcGIS attribute table
Auto.js 自定义对话框
cartographer_ There is no problem compiling node, but running the bug that hangs directly
Climbing watermelon video URL
Theory and practice of laser slam in dark blue College - Chapter 2 (odometer calibration)
.104History
[UDS unified diagnostic service] (Supplement) v. detailed explanation of ECU bootloader development points (1)
MySQL_01_简单数据检索