当前位置:网站首页>用D435i录制自己的数据集运行ORBslam2并构建稠密点云
用D435i录制自己的数据集运行ORBslam2并构建稠密点云
2022-04-23 04:14:00 【Tang Huanyi】
一、用sdk录制rosbag
二、播放rosbag并用rviz查看topic,记下rgb和depth流话题名
三、用如下脚本(python2而不是3)保存rgb和depth图片同时生成rgb.txt、depth.txt
可以把alias python='/usr/bin/python2.7’写进bashrc,用完后记得注释掉。
四、用该脚本associate.py生成associate.txt
import argparse
import sys
import os
import numpy
def read_file_list(filename):
""" Reads a trajectory from a text file. File format: The file format is "stamp d1 d2 d3 ...", where stamp denotes the time stamp (to be matched) and "d1 d2 d3.." is arbitary data (e.g., a 3D position and 3D orientation) associated to this timestamp. Input: filename -- File name Output: dict -- dictionary of (stamp,data) tuples """
file = open(filename)
data = file.read()
lines = data.replace(","," ").replace("\t"," ").split("\n")
list = [[v.strip() for v in line.split(" ") if v.strip()!=""] for line in lines if len(line)>0 and line[0]!="#"]
list = [(float(l[0]),l[1:]) for l in list if len(l)>1]
return dict(list)
def associate(first_list, second_list,offset,max_difference):
""" Associate two dictionaries of (stamp,data). As the time stamps never match exactly, we aim to find the closest match for every input tuple. Input: first_list -- first dictionary of (stamp,data) tuples second_list -- second dictionary of (stamp,data) tuples offset -- time offset between both dictionaries (e.g., to model the delay between the sensors) max_difference -- search radius for candidate generation Output: matches -- list of matched tuples ((stamp1,data1),(stamp2,data2)) """
first_keys = first_list.keys()
second_keys = second_list.keys()
potential_matches = [(abs(a - (b + offset)), a, b)
for a in first_keys
for b in second_keys
if abs(a - (b + offset)) < max_difference]
potential_matches.sort()
matches = []
for diff, a, b in potential_matches:
if a in first_keys and b in second_keys:
first_keys.remove(a)
second_keys.remove(b)
matches.append((a, b))
matches.sort()
return matches
if __name__ == '__main__':
# parse command line
parser = argparse.ArgumentParser(description=''' This script takes two data files with timestamps and associates them ''')
parser.add_argument('first_file', help='first text file (format: timestamp data)')
parser.add_argument('second_file', help='second text file (format: timestamp data)')
parser.add_argument('--first_only', help='only output associated lines from first file', action='store_true')
parser.add_argument('--offset', help='time offset added to the timestamps of the second file (default: 0.0)',default=0.0)
parser.add_argument('--max_difference', help='maximally allowed time difference for matching entries (default: 0.02)',default=0.02)
args = parser.parse_args()
first_list = read_file_list(args.first_file)
second_list = read_file_list(args.second_file)
matches = associate(first_list, second_list,float(args.offset),float(args.max_difference))
if args.first_only:
for a,b in matches:
print("%f %s"%(a," ".join(first_list[a])))
else:
for a,b in matches:
print("%f %s %f %s"%(a," ".join(first_list[a]),b-float(args.offset)," ".join(second_list[b])))
python2 associate.py depth.txt rgb.txt > associate.txt
五、测试
/Examples/RGB-D/rgbd_tum ./Vocabulary/ORBvoc.txt ./Examples/RGB-D/D435i.yaml ./dataset/ ./dataset/associate.txt
#附一份D435i.yaml
%YAML:1.0
#--------------------------------------------------------------------------------------------
# Camera Parameters. Adjust them!
#--------------------------------------------------------------------------------------------
# Camera calibration and distortion parameters (OpenCV)
Camera.fx: 615.9417724609375
Camera.fy: 616.0935668945312
Camera.cx: 322.3533630371094
Camera.cy: 240.44674682617188
Camera.k1: 0.0
Camera.k2: 0.0
Camera.p1: 0.0
Camera.p2: 0.0
Camera.p3: 0.0
Camera.width: 640
Camera.height: 480
# Camera frames per second
Camera.fps: 30.0
# IR projector baseline times fx (aprox.)
# bf = baseline (in meters) * fx, D435i的 baseline = 50 mm
Camera.bf: 30.797
# Color order of the images (0: BGR, 1: RGB. It is ignored if images are grayscale)
Camera.RGB: 1
# Close/Far threshold. Baseline times.
ThDepth: 40.0
# Deptmap values factor
DepthMapFactor: 1000.0
#--------------------------------------------------------------------------------------------
# ORB Parameters
#--------------------------------------------------------------------------------------------
# ORB Extractor: Number of features per image
ORBextractor.nFeatures: 1000
# ORB Extractor: Scale factor between levels in the scale pyramid
ORBextractor.scaleFactor: 1.2
# ORB Extractor: Number of levels in the scale pyramid
ORBextractor.nLevels: 8
# ORB Extractor: Fast threshold
# Image is divided in a grid. At each cell FAST are extracted imposing a minimum response.
# Firstly we impose iniThFAST. If no corners are detected we impose a lower value minThFAST
# You can lower these values if your images have low contrast
ORBextractor.iniThFAST: 20
ORBextractor.minThFAST: 7
#--------------------------------------------------------------------------------------------
# Viewer Parameters
#--------------------------------------------------------------------------------------------
Viewer.KeyFrameSize: 0.05
Viewer.KeyFrameLineWidth: 1
Viewer.GraphLineWidth: 0.9
Viewer.PointSize: 2
Viewer.CameraSize: 0.08
Viewer.CameraLineWidth: 3
Viewer.ViewpointX: 0
Viewer.ViewpointY: -0.7
Viewer.ViewpointZ: -1.8
Viewer.ViewpointF: 500
版权声明
本文为[Tang Huanyi]所创,转载请带上原文链接,感谢
https://blog.csdn.net/Hurt_Town/article/details/124358133
边栏推荐
- [mapping program design] coordinate azimuth calculation artifact (version C)
- [BIM introduction practice] Revit building wall: detailed picture and text explanation of structure, envelope and lamination
- VHDL语言实现32位二进制数转BCD码
- 现货黄金基本介绍
- The difference between lists, tuples, dictionaries and collections
- 【NeurIPS 2019】Self-Supervised Deep Learning on Point Clouds by Reconstructing Space
- 【BIM+GIS】ArcGIS Pro2. 8 how to open Revit model, Bim and GIS integration?
- 【测绘程序设计】坐标方位角推算神器(C#版)
- The whole process of connecting the newly created unbutu system virtual machine with xshell and xftp
- [AI vision · quick review of NLP natural language processing papers today, issue 28] wed, 1 Dec 2021
猜你喜欢
創下國產手機在海外市場銷量最高紀錄的小米,重新關注國內市場
The great gods in acmer like mathematics very much
Express middleware ① (use of Middleware)
【测绘程序设计】坐标反算神器V1.0(附C/C#/VB源程序)
秒杀所有区间相关问题
Photoshop installation under win10
QtSpim手册-中文翻译
[latex] differences in the way scores are written
Qtspim manual - Chinese Translation
Retrieval question answering system baseline
随机推荐
Shopping mall for transportation tools based on PHP
【时序】基于 TCN 的用于序列建模的通用卷积和循环网络的经验评估
单片机串口数据处理(2)——uCOSIII+循环队列接收数据
网络原理 | TCP/IP中的连接管理机制 重要协议与核心机制
Vscode download and installation + running C language
CRF based medical entity recognition baseline
Man's life
Set classic topics
基于PHP的代步工具购物商城
Solve the technical problems in seq2seq + attention machine translation
As a code farmer, what kind of experience is it that a girlfriend can code better than herself?
Express middleware ① (use of Middleware)
记录一下盲注脚本
[BIM introduction practice] Revit building wall: detailed picture and text explanation of structure, envelope and lamination
一个函数秒杀2Sum 3Sum 4Sum问题
STM32单片机ADC规则组多通道转换-DMA模式
Cause analysis of incorrect time of AI traffic statistics of Dahua Equipment Development Bank
Does China Mobile earn 285 million a day? In fact, 5g is difficult to bring more profits, so where is the money?
Machine translation baseline
Xiaomi, which has set the highest sales record of domestic mobile phones in overseas markets, paid renewed attention to the domestic market