当前位置:网站首页>2022 number two real problem
2022 number two real problem
2022-04-21 16:23:00 【Java full stack R & D Alliance】

Thought analysis :
See the problem of proving integral inequalities , First think of constructors , So what kind of function to construct ? What is the title to prove , We just build something , We can construct F ( x ) = ( x − a ) f ( a + x 2 ) − ∫ a x f ( t ) d t F(x)=(x-a)f(\frac{a+x}{2})-\int_{a}^{x}f(t)dt F(x)=(x−a)f(2a+x)−∫axf(t)dt
prove :
The need for : Make F ( x ) = ( x − a ) f ( a + x 2 ) − ∫ a x f ( t ) d t F(x)=(x-a)f(\frac{a+x}{2})-\int_{a}^{x}f(t)dt F(x)=(x−a)f(2a+x)−∫axf(t)dt , Obviously F(a)=0,
F ′ ( x ) = f ( a + x 2 ) + 1 2 ( x − a ) f ′ ( a + x 2 ) − f ( x ) F^{\prime}(x)=f(\frac{a+x}{2})+\frac{1}{2}(x-a)f^{\prime}(\frac{a+x}{2})-f(x) F′(x)=f(2a+x)+21(x−a)f′(2a+x)−f(x)
= 1 2 ( x − a ) f ˊ ( a + x 2 ) − [ f ( x ) − f ( a + x 2 ) ] =\frac{1}{2}(x-a)\acute{f}(\frac{a+x}{2})-[f(x)-f(\frac{a+x}{2})] =21(x−a)fˊ(2a+x)−[f(x)−f(2a+x)] = 1 2 ( x − a ) f ′ ( a + x 2 ) − 1 2 ( x − a ) f ( ξ ) ˊ =\frac{1}{2}(x-a)f^{\prime}(\frac{a+x}{2})-\frac{1}{2}(x-a)\acute{f(\xi)} =21(x−a)f′(2a+x)−21(x−a)f(ξ)ˊ, ξ ∈ ( a + x 2 , x ) \xi\in(\frac{a+x}{2},x) ξ∈(2a+x,x) = 1 2 ( x − a ) [ f ˊ ( a + x 2 ) − f ′ ( ξ ) ) ] =\frac{1}{2}(x-a)[\acute{f}(\frac{a+x}{2})-f^{\prime}(\xi))] =21(x−a)[fˊ(2a+x)−f′(ξ))]
because f ′ ′ ( x ) > 0 , f ′ ( a + x 2 ) − f ′ ( ξ ) < 0 f^{\prime{\prime}}(x)>0,f^{\prime}(\frac{a+x}{2})-f^{\prime}(\xi)<0 f′′(x)>0,f′(2a+x)−f′(ξ)<0, so F ′ ( x ) < 0 F^{\prime}(x)<0 F′(x)<0, therefore F ( b ) ≤ F ( a ) = 0 F(b) \leq F(a)=0 F(b)≤F(a)=0, therefore F ( b ) = ( b − a ) f ( a + b 2 ) − ∫ a b f ( t ) d t ≤ 0 , namely f ( a + b 2 ) < 1 b − a ∫ a b f ( t ) d t F(b)=(b-a)f(\frac{a+b}{2})-\int_{a}^{b}f(t)dt \leq 0, namely f(\frac{a+b}{2})<\frac{1}{b-a}\int_{a}^{b}f(t)dt F(b)=(b−a)f(2a+b)−∫abf(t)dt≤0, namely f(2a+b)<b−a1∫abf(t)dt
adequacy :
∀ x 0 ∈ ( − ∞ , + ∞ ) \forall x_0\in(-\infty,+\infty) ∀x0∈(−∞,+∞), take a = x 0 − h , b = x 0 + h a=x_0-h,b=x_0+h a=x0−h,b=x0+h, among h > 0 h>0 h>0, Then our formula f ( a + b 2 ) ≤ 1 b − a ∫ a b f ( t ) d t f(\frac{a+b}{2})\leq\frac{1}{b-a}\int_{a}^{b}f(t)dt f(2a+b)≤b−a1∫abf(t)dt It can be transformed into f ( x 0 ) ≤ 1 2 h ∫ x 0 − h x 0 + h f ( x ) d x ⇔ ∫ x 0 − h x 0 + h f ( x ) d x − 2 h f ( x 0 ) 2 h ≥ 0 f(x_0)\leq\frac{1}{2h} \int_{x_0-h}^{x_0+h}f(x)dx \Leftrightarrow \frac{\int_{x_0-h}^{x_0+h}f(x)dx-2hf(x_0)}{2h}\geq0 f(x0)≤2h1∫x0−hx0+hf(x)dx⇔2h∫x0−hx0+hf(x)dx−2hf(x0)≥0,
To prove... In the title f ′ ′ ( x ) ≥ 0 , f^{\prime\prime}(x)\geq 0, f′′(x)≥0, We can only think of 2 Kind of way
① Start with the definition of derivative , Find a way to construct the definition of derivative
② Using Taylor's formula ( Because there are first-order derivatives and second-order derivatives in Taylor's formula )
③ The law of lophida ( Keep the numerator and denominator rolling down , There must be higher derivatives )
For this question , We have introduced neighborhood ( x 0 − h , x 0 + h ) (x_0-h,x_0+h) (x0−h,x0+h), Because to prove f ′ ′ ( x ) f^{\prime\prime}(x) f′′(x), So let's assume a and b Very, very close , namely lim h → 0 \lim_{h\to 0} limh→0, For this case of finding the limit , We first think of the law of lobida , Therefore, for the formula ∫ x 0 − h x 0 + h f ( x ) d x − 2 h f ( x 0 ) 2 h ≥ 0 \frac{\int_{x_0-h}^{x_0+h}f(x)dx-2hf(x_0)}{2h}\geq0 2h∫x0−hx0+hf(x)dx−2hf(x0)≥0, We can find a way to solve the problem with lobida's law , For molecules , It has to be done 3 The second derivative can appear f ′ ′ ( x ) f^{\prime\prime}(x) f′′(x) The second derivative , And the denominator can't stand 3 Subderivative , Then what shall I do? , We increase the power of the denominator to 3 rank ∫ x 0 − h x 0 + h f ( x ) d x − 2 h f ( x 0 ) 2 h 3 ≥ 0 \frac{\int_{x_0-h}^{x_0+h}f(x)dx-2hf(x_0)}{2h^3}\geq0 2h3∫x0−hx0+hf(x)dx−2hf(x0)≥0, Then take the derivative up and down
lim h → 0 ∫ x 0 − h x 0 + h f ( x ) d x − 2 h f ( x 0 ) 2 h 3 \lim_{h\to0}\frac{\int_{x_0-h}^{x_0+h}f(x)dx-2hf(x_0)}{2h^3} limh→02h3∫x0−hx0+hf(x)dx−2hf(x0)
= lim h → 0 f ( x 0 + h ) − f ( x 0 − h ) − 2 f ( x 0 ) 6 h 2 =\lim_{h\to0}\frac{f(x_0+h)-f(x_0-h)-2f(x_0)}{6h^2} =h→0lim6h2f(x0+h)−f(x0−h)−2f(x0) = lim h → 0 f ′ ( x 0 + h ) + f ′ ( x 0 − h ) 12 h =\lim_{h\to0} \frac{f^{\prime}(x_0+h)+f^{\prime}(x_0-h)}{12h} =h→0lim12hf′(x0+h)+f′(x0−h) = lim h → 0 f ′ ′ ( x 0 + h ) − f ′ ′ ( x 0 − h ) 12 =\lim_{h\to0}\frac{f^{\prime\prime}(x_0+h)-f^{\prime\prime}(x_0-h)}{12} =h→0lim12f′′(x0+h)−f′′(x0−h)
When h → 0 h\to0 h→0 when , Molecules are f ′ ′ ( x 0 ) + f ′ ′ ( x 0 ) = 2 f ′ ′ ( x 0 ) f^{\prime\prime}(x_0)+f^{\prime\prime}(x_0)=2f^{\prime\prime}(x_0) f′′(x0)+f′′(x0)=2f′′(x0)
therefore = lim h → 0 f ′ ′ ( x 0 + h ) + f ′ ′ ( x 0 − h ) 12 = f ′ ′ ( x 0 ) 6 =\lim_{h\to0} \frac{f^{\prime\prime}(x_0+h)+f^{\prime\prime}(x_0-h)}{12}=\frac{f^{\prime\prime}(x_0)}{6} =h→0lim12f′′(x0+h)+f′′(x0−h)=6f′′(x0)
therefore f ′ ′ ( x 0 ) 6 ≥ 0 \frac{f^{\prime\prime}(x_0)}{6}\geq0 6f′′(x0)≥0, By limit number preservation , f ′ ′ ( x 0 ) ≥ 0 f^{\prime\prime}(x_0)\geq0 f′′(x0)≥0. This question is proved
版权声明
本文为[Java full stack R & D Alliance]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/04/202204211619273088.html
边栏推荐
- The conflict between Russia and Ukraine raised concerns. The five eye network security department suggested that allies strengthen infrastructure protection measures
- 十荟团 小程序 APP自动登录 aes数据解密 学习记录
- 建木持续集成平台v2.3.0发布
- Xiaomi Hongmi's note 4x brush machine succeeded
- OJ每日一练——发放奖金
- [2023 school recruitment questions] Huawei's character evaluation (Comprehensive Evaluation) Strategic Guide
- Announcement of the first ship sea data intelligent application innovation competition
- 全国查询水电气费免费接口(二)
- Xiaomi civi 1s is priced from 2299 yuan. It focuses on beauty and gives you freedom to appear on the camera
- 排序课后练习题
猜你喜欢

Must brush the simulated question bank and answers of the latest eight members of Chongqing in 2022

How does PHP convert negative numbers to positive integers

The elmentui drop-down box realizes all functions

SQL -- database operation (DDL, DML, DQL) + use the command to view the storage location of the current database (database version query)

CRM系统可以帮助改善客户体验吗?

CLion 中添加 release 配置

Xiaomi Hongmi's note 4x brush machine succeeded

首届船海数据智能应用创新大赛赛事公告

HMC基金会Big Ma机器人同步代币HMC(希曼)将上线 PancakeSWAP

. net swagger configuration
随机推荐
iOS开发面试攻略(KVO、KVC、多线程、锁、runloop、计时器)
OJ每日一练——发放奖金
OJ daily practice - grade score
[2023 school recruitment questions] Huawei's character evaluation (Comprehensive Evaluation) Strategic Guide
Sword finger offer day23 math (simple)
What are the mainstream types of mobile phone screens at present
WebSocket 协议详解
HMC基金会Big Ma机器人同步代币HMC(希曼)将上线 PancakeSWAP
Sharkteam releases quarterly report on security situational awareness of Q1 smart contract in 2022
Download the documentation tutorial for free
Dry goods | solve the common pain points of APP automation test (pop-up frame and home page start loading to complete judgment processing)
mingw下载
目前主流的手机SOC芯片都有哪些?
Is 5g SOC chip technology mature at present?
Xiaomi civi 1s is priced from 2299 yuan. It focuses on beauty and gives you freedom to appear on the camera
Burp 一个简易的tp5-rce被动扫描插件
Online dictionary website
期约与异步函数
Meizu official machine brushing tutorial address (free)
SIGIR 2022 | 从Prompt的角度考量强化学习推荐系统