🎯 A comprehensive gradient-free optimization framework written in Python

Overview

Build Status MIT License

Solid is a Python framework for gradient-free optimization.

It contains basic versions of many of the most common optimization algorithms that do not require the calculation of gradients, and allows for very rapid development using them.

It's a very versatile library that's great for learning, modifying, and of course, using out-of-the-box.

See the detailed documentation here.


Current Features:


Usage:

  • pip install solidpy
  • Import the relevant algorithm
  • Create a class that inherits from that algorithm, and that implements the necessary abstract methods
  • Call its .run() method, which always returns the best solution and its objective function value

Example:

from random import choice, randint, random
from string import lowercase
from Solid.EvolutionaryAlgorithm import EvolutionaryAlgorithm


class Algorithm(EvolutionaryAlgorithm):
    """
    Tries to get a randomly-generated string to match string "clout"
    """
    def _initial_population(self):
        return list(''.join([choice(lowercase) for _ in range(5)]) for _ in range(50))

    def _fitness(self, member):
        return float(sum(member[i] == "clout"[i] for i in range(5)))

    def _crossover(self, parent1, parent2):
        partition = randint(0, len(self.population[0]) - 1)
        return parent1[0:partition] + parent2[partition:]

    def _mutate(self, member):
        if self.mutation_rate >= random():
            member = list(member)
            member[randint(0,4)] = choice(lowercase)
            member = ''.join(member)
        return member


def test_algorithm():
    algorithm = Algorithm(.5, .7, 500, max_fitness=None)
    best_solution, best_objective_value = algorithm.run()

Testing

To run tests, look in the tests folder.

Use pytest; it should automatically find the test files.


Contributing

Feel free to send a pull request if you want to add any features or if you find a bug.

Check the issues tab for some potential things to do.

Comments
  • Run flake8 in warning only mode on Python 2 and 3

    Run flake8 in warning only mode on Python 2 and 3

    This will help us find and fix the Python 3 syntax errors (print_function, etc.) A step towards the resolution of https://github.com/100/Solid/issues/6

    opened by cclauss 6
  • Simulated annealing: bug in run method

    Simulated annealing: bug in run method

    Description of the bug

    The run() method of the SimulatedAnnealing class has a bug when the annealing method does not find a better state than the initial one.

    When does it happens

    The bug happens when the annealing algorithm fails to find a better state than the initial one. This can happen when the maximum number of steps is low or when the initial guess is already very good.

    What is the current behaviour

    The tuple returned by the run() method is (None, cost_of_initial_state).

    How to fix

    Add the line

    self.best_state = deepcopy(self.current_state)
    

    between L142 and L143.

    opened by nelimee 0
  • Correction of EA and GA for nondeterministic fitness functions

    Correction of EA and GA for nondeterministic fitness functions

    Correction of an issue that occurs when the fitness function is nondeterministic (shuffled cross-validation for example). In the _select_n method, the total fitness is computed according to the stored fitnesses, but the probs variable is computed according to recalculated fitness values. This slight change makes the method use the stored fitnesses at each time, which solves the problem. This also makes the method run much faster (especially when the fitness function has a high complexity) by removing unnecessary calls to _fitness.

    opened by miraaitsaada 0
  • More Algorithms

    More Algorithms

    Of course, more algorithms are always great.

    Some suggestions:

    • Coordinate descent
    • Ant colony optimization
    • Differential evolution
    • Cuckoo search
    • Cross-entropy method
    enhancement help wanted 
    opened by 100 0
  • Numerical Stabilitity

    Numerical Stabilitity

    It would be good to find all of the instances where the algorithms may be unstable and handle these cases appropriately (such as overflow). Some cases are handled, but there are probably more.

    bug help wanted 
    opened by 100 0
  • Better Testing?

    Better Testing?

    Currently, the testing just makes sure that the algorithm runs without error on a toy problem.

    It would be nice to do something more akin to unit testing, but I'm not quite sure how to do it in this situation since a lot of the testable functionality is provided by the user.

    enhancement help wanted question 
    opened by 100 0
Releases(0.11)
TagLab: an image segmentation tool oriented to marine data analysis

TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist

Visual Computing Lab - ISTI - CNR 49 Dec 29, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

349 Dec 08, 2022
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence

Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence, etc. This article aims to provide an introduction on how to make use of the S

RISHABH MISHRA 1 Feb 13, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023
Hierarchical Attentive Recurrent Tracking

Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte

Adam Kosiorek 147 Aug 07, 2021
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022
MakeItTalk: Speaker-Aware Talking-Head Animation

MakeItTalk: Speaker-Aware Talking-Head Animation This is the code repository implementing the paper: MakeItTalk: Speaker-Aware Talking-Head Animation

Adobe Research 285 Jan 08, 2023
NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages

NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages. This project was supported by lacuna-fund initiatives. Jump straight to one of the sections below, or jus

Hausa Natural Language Processing 14 Dec 20, 2022
Supervised forecasting of sequential data in Python.

Supervised forecasting of sequential data in Python. Intro Supervised forecasting is the machine learning task of making predictions for sequential da

The Alan Turing Institute 54 Nov 15, 2022
Pca-on-genotypes - Mini bioinformatics project - PCA on genotypes

Mini bioinformatics project: PCA on genotypes This repo contains the code from t

Maria Nattestad 8 Dec 04, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 734 Jan 03, 2023
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

77 Dec 16, 2022
Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

LADA This repo contains codes for the following paper: Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augm

GT-SALT 36 Dec 02, 2022
ToFFi - Toolbox for Frequency-based Fingerprinting of Brain Signals

ToFFi Toolbox This repository contains "before peer review" version of the software related to the preprint of the publication ToFFi - Toolbox for Fre

4 Aug 31, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022