Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Related tags

Deep LearningGCS_KI
Overview

Graph Convolution Simulator (GCS)

Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Requirements:

PyTorch and DGL should be installed based on your system. For other libraries, you can install them using the following command:

$ pip install -r requirements.txt

Run Knowledge Integration Interpretation (KI) by GCS on example data:

$ bash run_example.sh

Interpretation results are saved in ./example/example_data/gcs.edgelist.

If the knowledge graph is small, users can visualize it by ./example/example_data/results.pdf. Here is the results for the example data: image

Run Knowledge Intergration Interpretation by GCS for your own model

Step 1: Prepare the entity embedding of vanilla LM and knowledge-enhanced LM:

Store them as PyTorch tensor (.pt) format. Make sure they have the same number of rows, and the indexes of entities are the same. The default files are emb_roberta.pt and emb_kadapter.pt.

Step 2: Prepare the knowledge graph:

Three files are needed to load the knowledge graph:

  • a) qid2idx.json: The index dictionary. The key is entity Q-label, and value is the index of entity in entity embedding
  • b) qid2label.json : The label dictionary. The key is entity Q-label, and the value is the entity label text. Note that this dictionary is only for visualization, you can set it as {Q-label: Q-label} if you don't have the text.
  • c) kg.edgelist: The knowledge triple to construct knowledge graph. Each row is for one triple as: entity1_idx \t entity2_idx \t {}.

Step 3: Run GCS for KI interpretation:

After two preparation steps, you can run GCS by:

$ python src/example.py  --emb_vlm emb_roberta.pt  -emb_klm emb_kadapter.pt  --data_dir ./example_data  --lr 1e-3  --loss mi_loss

As for the hyperparameters, users may check them in ./example/src/example.py. Note that for large knowledge graphs, we recommend to use mutual information loss (mi_loss), and please do not visualize the results for large knowledge graphs.

Step 4: Analyze GCS interpretation results:

The interpretation results are saved in ./example/example_data/gcs.edgelist. Each row is for one triple as: entity1_idx \t entity2_idx \t {'a': xxxx}. Here, the value of 'a' is the attention coefficient value on the triple/entity (entity1, r, entity2). Users may use them to analyze the factual knowledge learned during knowledge integration.

Reproduce the results in the paper

Please enter ./all_exp folder for more details

Cite

If you use the code, please cite the paper:

@article{hou2022understanding,
  title={Understanding Knowledge Integration in Language Models with Graph Convolutions},
  author={Hou, Yifan and Fu, Guoji and Sachan, Mrinmaya},
  journal={arXiv preprint arXiv:2202.00964},
  year={2022}
}

Contact

Feel free to open an issue or send me ([email protected]) an email if you have any questions!

Owner
yifan
yifan
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta

Charles R. Qi 4k Dec 30, 2022
Answering Open-Domain Questions of Varying Reasoning Steps from Text

This repository contains the authors' implementation of the Iterative Retriever, Reader, and Reranker (IRRR) model in the EMNLP 2021 paper "Answering Open-Domain Questions of Varying Reasoning Steps

26 Dec 22, 2022
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters

Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A

Nada Amin 6 Feb 02, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
An index of algorithms for learning causality with data

awesome-causality-algorithms An index of algorithms for learning causality with data. Please cite our survey paper if this index is helpful. @article{

Ruocheng Guo 2.3k Jan 08, 2023
PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation

Baptiste 53 Nov 16, 2022
🤖 Project template for your next awesome AI project. 🦾

🤖 AI Awesome Project Template 👋 Template author You may want to adjust badge links in a README.md file. 💎 Installation with pip Installation is as

Wiktor Łazarski 18 Nov 23, 2022
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"

Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul

peng gao 157 Dec 26, 2022
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., Güney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022
Code repo for EMNLP21 paper "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation"

Zero-Shot Information Extraction as a Unified Text-to-Triple Translation Source code repo for paper Zero-Shot Information Extraction as a Unified Text

cgraywang 88 Dec 31, 2022
PyTorch Implementation of Realtime Multi-Person Pose Estimation project.

PyTorch Realtime Multi-Person Pose Estimation This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here Realtime_Multi-P

Dave Fang 157 Nov 12, 2022
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
This repository contains the entire code for our work "Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding"

Two-Timescale-DNN Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding This repository contains the entire code for our work

QiyuHu 3 Mar 07, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022