Ascend your Jupyter Notebook usage

Overview

Jupyter Ascending

Sync Jupyter Notebooks from any editor

Jupyter Ascending

About

Jupyter Ascending lets you edit Jupyter notebooks from your favorite editor, then instantly sync and execute that code in the Jupyter notebook running in your browser.

It's the best of both worlds--the autocomplete, keybindings, and refactoring tools you love in your favorite editor, plus the great visualization abilities of a Jupyter notebook.

Combined with basic syncing of your code to a remote server, you can have all the power of a beefy dev-server with all the convenience of editing code locally.

Installation

$ pip install jupyter_ascending && \
jupyter nbextension    install jupyter_ascending --sys-prefix --py && \
jupyter nbextension     enable jupyter_ascending --sys-prefix --py && \
jupyter serverextension enable jupyter_ascending --sys-prefix --py

You can confirm it's installed by checking for jupyter_ascending in:

$ jupyter nbextension     list
$ jupyter serverextension list

Usage

Quickstart

  1. python -m jupyter_ascending.scripts.make_pair --base example

    This makes a pair of synced py and ipynb files, example.sync.py and example.sync.ipynb.

  2. Start jupyter and open the notebook:

    jupyter notebook example.sync.ipynb

  3. Add some code to the .sync.py file, e.g.

    echo 'print("Hello World!")' >> example.sync.py

  4. Sync the code into the jupyter notebook:

    python -m jupyter_ascending.requests.sync --filename example.sync.py

  5. Run that cell of code

    python -m jupyter_ascending.requests.execute --filename example.sync.py --line 16

Set up one of the editor integrations to do all of this from within your favorite editor!

Working with multiple jupyter servers or alternate ports

Currently Jupyter Ascending expects the jupyter server to be running at localhost:8888. If it's running elsewhere (eg due to having multiple jupyter notebooks open), you'll need to set the env variables JUPYTER_ASCENDING_EXECUTE_HOST and JUPYTER_ASCENDING_EXECUTE_PORT appropriately both where you use the client (ie in your editor) and where you start the server.

By default the Jupyter server will search for a free port starting at 8888. If 8888 is unavailable and it selects eg 8889, Jupyter Ascending won't work - as it's expecting to connect to 8888. To force Jupyter to use a specific port, start your jupyter notebook with JUPYTER_PORT=8888 JUPYTER_PORT_RETRIES=0 jupyter notebook (or whatever port you want, setting also JUPYTER_ASCENDING_EXECUTE_PORT appropriately).

Working on a remote server

Jupyter Ascending doesn't know or care if the editor and the jupyter server are on the same machine. The client is just sending requests to http://[jupyter_server_url]:[jupyter_server_port]/jupyter_ascending, with the default set to http://localhost:8888/jupyter_ascending. We typically use SSH to forward the local jupyter port into the remote server, but you can set up the networking however you like, and use the environment variables to tell the client where to look for the Jupyter server.

There's fuzzy-matching logic to match the locally edited file path with the remote notebook file path (eg if the two machines have the code in a different directory), so everything should just work!

Here's an example of how you could set this up:

  1. install jupyter-ascending on both the client and the server

  2. put a copy of your project code on both the client and the server

  3. start a jupyter notebook on the server, and open a .sync.ipynb notebook

  4. set up port forwarding, e.g. with something like this (forwards local port 8888 to the remote port 8888)

    ssh -L 8888:127.0.0.1:8888 [email protected]_hostname

  5. use Jupyter Ascending clients as normal on the corresponding .sync.py file

Security Warning

The jupyter-ascending client-server connection is currently completely unauthenticated, even if you have auth enabled on the Jupyter server. This means that, if your jupyter server port is open to the internet, someone could detect that you have jupyter-ascending running, then sync and run arbitrary code on your machine. That's bad!

For the moment, we recommend only running jupyter-ascending when you're using jupyter locally, or when your jupyter server isn't open to the public internet. For example, we run Jupyter on remote servers, but keep Jupyter accessible only to localhost. Then we use a secure SSH tunnel to do port-forwarding.

Hopefully we can add proper authentication in the future. Contributions are welcome here!

How it works

  • your editor calls the jupyter ascending client library with one of a few commands:
    • sync the code to the notebook (typically on save)
    • run a cell / run all cells / other commands that should be mapped to a keyboard shortcut
  • the client library assembles a HTTP POST request and sends it to the jupyter server
  • there is a jupyter server extension which accepts HTTP POST requests at http://[jupyter_server_url]:[jupyter_server_port]/jupyter_ascending.
  • the server extension matches the request filename to the proper running notebooks and forwards the command along to the notebook plugin
  • a notebook plugin receives the command, and updates the contents of the notebook or executes the requested command.
  • the notebook plugin consists of two parts - one part executes within the python process of the notebook kernel, and the other executes in javascript in the notebook's browser window. the part in python launches a little webserver in a thread, which is how it receives messages the server extension. when the webserver thread starts up, it sends a message to the server extension to "register" itself so the server extension knows where to send commands for that notebook.

Local development

To do local development (only needed if you're modifying the jupyter-ascending code):

# install dependencies
$ poetry install

# Activate the poetry env
$ poetry shell

# Installs the extension, using symlinks
$ jupyter nbextension install --py --sys-prefix --symlink jupyter_ascending

# Enables them, so it auto loads
$ jupyter nbextension enable jupyter_ascending --py --sys-prefix
$ jupyter serverextension enable jupyter_ascending --sys-prefix --py

To check that they are enabled, do something like this:

$ jupyter nbextension list
Known nbextensions:
  config dir: /home/tj/.pyenv/versions/3.8.1/envs/general/etc/jupyter/nbconfig
    notebook section
      jupytext/index  enabled
      - Validating: OK
      jupyter-js-widgets/extension  enabled
      - Validating: OK
      jupyter_ascending/extension  enabled
      - Validating: OK

$ jupyter serverextension list
config dir: /home/tj/.pyenv/versions/3.8.1/envs/general/etc/jupyter
    jupytext  enabled
    - Validating...
      jupytext 1.8.0 OK
    jupyter_ascending  enabled
    - Validating...
      jupyter_ascending 0.1.13 OK

Run tests from the root directory of this repository using python -m pytest ..

Format files with pyfixfmt. In a PyCharm file watcher, something like

python -m pyfixfmt --file-glob $FilePathRelativeToProjectRoot$ --verbose

Pushing a new version to PyPI:

  • Bump the version number in pyproject.toml and _version.py.
  • poetry build
  • poetry publish
  • git tag VERSION and git push origin VERSION

Updating dependencies:

  • Dependency constraints are in pyproject.toml. These are the constraints that will be enforced when distributing the package to end users.
  • These get locked down to specific versions of each package in poetry.lock, when you run poetry lock or poetry install for the first time. poetry.lock is only used by developers using poetry install - the goal is to have a consistent development environment for a all developers.
  • If you make a change to the dependencies in pyproject.toml, you'll want to update the lock file with poetry lock. To get only the minimal required changes, use poetry lock --no-update.
Owner
Untitled AI
We're investigating the fundamentals of learning across humans and machines in order to create more general machine intelligence.
Untitled AI
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
GNN-based Recommendation Benchmark

GRecX A Fair Benchmark for GNN-based Recommendation Homepage and Documentation Homepage: Documentation: Paper: GRecX: An Efficient and Unified Benchma

73 Oct 17, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning ๐ŸŽ† ๐ŸŽ† ๐ŸŽ† Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

Nguyen Mau Dzung 271 Nov 29, 2022
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Cรขmara 5 Jan 21, 2022
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 03, 2023
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting Recent progress in neural forecasting instigated significant improvements in the

Cristian Challu 82 Jan 04, 2023
Square Root Bundle Adjustment for Large-Scale Reconstruction

RootBA: Square Root Bundle Adjustment Project Page | Paper | Poster | Video | Code Table of Contents Citation Dependencies Installing dependencies on

Nikolaus Demmel 205 Dec 20, 2022
This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis

This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis, accepted at ACMMM 2021.

Ziqi Yuan 10 Sep 30, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

John 9 Sep 18, 2022
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales

IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales. In this case, we ended up using XGBoost because it was the o

1 Jan 04, 2022