PyTorch implementation for ComboGAN

Overview

ComboGAN

This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN)

[ComboGAN Paper]

If you use this code for your research, please cite:

ComboGAN: Unrestrained Scalability for Image Domain Translation Asha Anoosheh, Eirikur Augustsson, Radu Timofte, Luc van Gool In Arxiv, 2017.





Prerequisites

  • Linux or macOS
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Getting Started

Installation

  • Install PyTorch and dependencies from http://pytorch.org
  • Install Torch vision from the source.
git clone https://github.com/pytorch/vision
cd vision
python setup.py install
pip install visdom
pip install dominate
  • Clone this repo:
git clone https://github.com/AAnoosheh/ComboGAN.git
cd ComboGAN

ComboGAN training

Our ready datasets can be downloaded using ./datasets/download_dataset.sh .

A pretrained model for the 14-painters dataset can be found HERE. Place under ./checkpoints/ and test using the instructions below, with args --name paint14_pretrained --dataroot ./datasets/painters_14 --n_domains 14 --which_epoch 1150.

Example running scripts can be found in the scripts directory.

  • Train a model:
python train.py --name 
   
     --dataroot ./datasets/
    
      --n_domains 
     
       --niter 
      
        --niter_decay 
        
       
      
     
    
   

Checkpoints will be saved by default to ./checkpoints/ /

  • Fine-tuning/Resume training:
python train.py --continue_train --which_epoch 
   
     --name 
    
      --dataroot ./datasets/
     
       --n_domains 
      
        --niter 
       
         --niter_decay 
         
        
       
      
     
    
   
  • Test the model:
python test.py --phase test --name 
   
     --dataroot ./datasets/
    
      --n_domains 
     
       --which_epoch 
      
        --serial_test

      
     
    
   

The test results will be saved to a html file here: ./results/ / /index.html .

Training/Testing Details

  • Flags: see options/train_options.py for training-specific flags; see options/test_options.py for test-specific flags; and see options/base_options.py for all common flags.
  • Dataset format: The desired data directory (provided by --dataroot) should contain subfolders of the form train*/ and test*/, and they are loaded in alphabetical order. (Note that a folder named train10 would be loaded before train2, and thus all checkpoints and results would be ordered accordingly.)
  • CPU/GPU (default --gpu_ids 0): set--gpu_ids -1 to use CPU mode; set --gpu_ids 0,1,2 for multi-GPU mode. You need a large batch size (e.g. --batchSize 32) to benefit from multiple GPUs.
  • Visualization: during training, the current results and loss plots can be viewed using two methods. First, if you set --display_id > 0, the results and loss plot will appear on a local graphics web server launched by visdom. To do this, you should have visdom installed and a server running by the command python -m visdom.server. The default server URL is http://localhost:8097. display_id corresponds to the window ID that is displayed on the visdom server. The visdom display functionality is turned on by default. To avoid the extra overhead of communicating with visdom set --display_id 0. Secondly, the intermediate results are also saved to ./checkpoints/ /web/index.html . To avoid this, set the --no_html flag.
  • Preprocessing: images can be resized and cropped in different ways using --resize_or_crop option. The default option 'resize_and_crop' resizes the image to be of size (opt.loadSize, opt.loadSize) and does a random crop of size (opt.fineSize, opt.fineSize). 'crop' skips the resizing step and only performs random cropping. 'scale_width' resizes the image to have width opt.fineSize while keeping the aspect ratio. 'scale_width_and_crop' first resizes the image to have width opt.loadSize and then does random cropping of size (opt.fineSize, opt.fineSize).

NOTE: one should not expect ComboGAN to work on just any combination of input and output datasets (e.g. dogs<->houses). We find it works better if two datasets share similar visual content. For example, landscape painting<->landscape photographs works much better than portrait painting <-> landscape photographs.

Owner
Asha Anoosheh
Asha Anoosheh
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

ShuweiShao 2 Apr 13, 2022
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
SigOpt wrappers for scikit-learn methods

SigOpt + scikit-learn Interfacing This package implements useful interfaces and wrappers for using SigOpt and scikit-learn together Getting Started In

SigOpt 73 Sep 30, 2022
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
Evaluation framework for testing segmentation networks in PyTorch

Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!

Eugene Khvedchenya 37 Apr 27, 2022
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
This repo contains source code and materials for the TEmporally COherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Nils Thuerey 5.2k Jan 02, 2023
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023