Natural Intelligence is still a pretty good idea.

Overview

Downloads Version Code style: black DOI

Human Learn

Machine Learning models should play by the rules, literally.

Project Goal

Back in the old days, it was common to write rule-based systems. Systems that do;

Nowadays, it's much more fashionable to use machine learning instead. Something like;

We started wondering if we might have lost something in this transition. Sure, machine learning covers a lot of ground but it is also capable of making bad decisions. We need to remain careful about hype. We also shouldn't forget that many classification problems can be handled by natural intelligence too. If nothing else, it'd sure be a sensible benchmark.

This package contains scikit-learn compatible tools that should make it easier to construct and benchmark rule based systems that are designed by humans. You can also use it in combination with ML models.

Installation

You can install this tool via pip.

python -m pip install human-learn

The project builds on top of a modern installation of scikit-learn and pandas. It also uses bokeh for interactive jupyter elements, shapely for the point-in-poly algorithms and clumper to deal with json datastructures.

Documentation

Detailed documentation of this tool can be found here.

A free video course can be found on calmcode.io.

Features

This library hosts a couple of models that you can play with.

Interactive Drawings

This tool allows you to draw over your datasets. These drawings can later be converted to models or to preprocessing tools.

Classification Models

FunctionClassifier

This allows you to define a function that can make classification predictions. It's constructed in such a way that you can use the arguments of the function as a parameter that you can benchmark in a grid-search.

InteractiveClassifier

This allows you to draw decision boundaries in interactive charts to create a model. You can create charts interactively in the notebook and export it as a scikit-learn compatible model.

Regression Models

FunctionRegressor

This allows you to define a function that can make regression predictions. It's constructed in such a way that you can use the arguments of the function as a parameter that you can benchmark in a grid-search.

Outlier Detection Models

FunctionOutlierDetector

This allows you to define a function that can declare outliers. It's constructed in such a way that you can use the arguments of the function as a parameter that you can benchmark in a grid-search.

InteractiveOutlierDetector

This allows you to draw decision boundaries in interactive charts to create a model. If a point falls outside of these boundaries we might be able to declare it an outlier. There's a threshold parameter for how strict you might want to be.

Preprocessing Models

PipeTransformer

This allows you to define a function that can handle preprocessing. It's constructed in such a way that you can use the arguments of the function as a parameter that you can benchmark in a grid-search. This is especially powerful in combination with the pandas .pipe method. If you're unfamiliar with this amazing feature, you may appreciate this tutorial.

InteractivePreprocessor

This allows you to draw features that you'd like to add to your dataset or your machine learning pipeline. You can use it via tfm.fit(df).transform(df) and df.pipe(tfm).

Datasets

Titanic

This library hosts the popular titanic survivor dataset for demo purposes. The goal of this dataset is to predict who might have survived the titanic disaster.

Fish

The fish market dataset is also hosted in this library. The goal of this dataset is to predict the weight of fish. However, it can also be turned into a classification problem by predicting the species.

Contribution

We're open to ideas for the repository but please discuss any feature you'd like to add before working on a PR. This way folks will know somebody is working on a feature and the implementation can be discussed with the maintainer upfront.

If you want to quickly get started locally you can run the following command to set the local development environment up.

make develop

If you want to run all the tests/checks locally you can run.

make check

This will run flake8, black, pytest and test the documentation pages.

Comments
  • Idea for a simple rule based classifier

    Idea for a simple rule based classifier

    Ideas for a rule based classifier after discussion with

    @koaning: The hope with that idea is that you can define case_when like statements that can be used as a rule based system.

    This has a few benefits.

    1. It's simple to create for a domain person.
    2. It's possible to create a ui/webapp for it.
    3. You might even be able to generate SQL so that the ML system can also "be deployed" in a database.

    This classifier would not have the full power of Python, but is rather a collection of rules entered by domain experts who are not necessarily technical people.

    Rules

    Rules have no structure and are always interpreted as disjunctions (or) and can be composed of conjunctions (and). To resolve conflict they can have a simple priority field.

    Format of the rules could be

    term:
       feature_name op value
    
    op: '=', '<>', '<', '>', '<=', '>='
    
    expr: term 
           | term 'and' term
    
    rule : term '=>' prediction (prio)?
    

    Examples

    • age < 60 => low
    • sex = 'f' and fare <> => high 10

    Rules need not be expressed as plain text, but also a structured format of nested lists/arrays. A parser for a text format like this would be possible with a very simple recursive descent parser.

    API

    class ClassifierBase:
        def predict(self, X):
            return np.array([ self.predict_single(x) for x in X])
        def predict_proba(self, X):
            return np.array([probas[xi] for xi in self.predict(X)])
        def score(self, X, y):
            n = len(y)
            correct = 0
            predictions = self.predict(X)
            for prediction, ground_truth in zip(predictions, y):
                if prediction == ground_truth:
                    correct = correct + 1
            return correct / n
    
    class CaseWhenClassifier(ClassifierBase):
        def predict_single(self, x):
           ...
    
        def .from_sklearn_tree(self, tree):
           ...
    
        def .to_sklearn_tree(self):
           ...
    
        def to_python_code(self, code_style):
          ...
    
        def parse(self, rules_as_text):
          ...
    
    rules = ...
    rule_clf = CaseWhenClassifier(features, categories, rules)
    
    

    Debugging support for plotting pairwise decision boundaries would be helpful.

    opened by DJCordhose 12
  • Can not draw model on jupyter

    Can not draw model on jupyter

    Hi, I'm trying to draw model on jupyter by referring to this link but it doesn't aprear anything.

    image

    jupyter was run on ubuntu machine and accessed from another remote computer in the same subnet.

    bokeh==2.4.3
    human-learn==0.3.1
    ipywidgets==7.7.1
    jupyter==1.0.0
    jupyter-client==7.3.4
    jupyter-console==6.4.4
    jupyter-core==4.11.1
    jupyter-server==1.18.1
    jupyterlab==3.4.4
    jupyterlab-pygments==0.2.2
    jupyterlab-server==2.15.0
    jupyterlab-widgets==1.1.1
    
    opened by didw 9
  • Adding a tooltip would help make decision on where to draw the line when no labels are available

    Adding a tooltip would help make decision on where to draw the line when no labels are available

    Hey there! Human learn has been super helpful so far. One thing I am a bit missing is the ability to see some of the underlying data about each data point. It would be very helpful to have a tooltip and having the option to pick a list of columns from the data frame to see in the tooltip.

    Right now, I am using Plotly separately to do that which allows me to more easily explore clusters. Then I try to find this cluster and draw on it.

    Screenshot 2021-01-14 19:22:32

    What do you think? Cheers, Nicolas

    opened by nbeuchat 7
  • InteractiveCharts with more than 5 unique labels throws an error when adding a new chart

    InteractiveCharts with more than 5 unique labels throws an error when adding a new chart

    Hi there! I noticed that when the column used for the labels or the color in an InteractiveCharts contains more than 5 unique values, adding a chart throws an error because the number of available colors in _colors is too low.

    # group_kind contains 7 unique values
    clf = InteractiveCharts(dfs, labels=["spam", "not_spam"], color="group_kind")
    clf.add_chart(x="umap_1", y="umap_2")
    

    It throws the error:

    KeyError                                  Traceback (most recent call last)
    <ipython-input-108-2daa1de2581a> in <module>
    ----> 1 clf.add_chart(x="umap_1", y="umap_2")
    
    ~/anaconda3/envs/nlp_fb_posts_topics/lib/python3.8/site-packages/hulearn/experimental/interactive.py in add_chart(self, x, y, size, alpha, width, height, legend)
         84         ```
         85         """
    ---> 86         chart = SingleInteractiveChart(
         87             dataf=self.dataf.copy(),
         88             labels=self.labels,
    
    ~/anaconda3/envs/nlp_fb_posts_topics/lib/python3.8/site-packages/hulearn/experimental/interactive.py in __init__(self, dataf, labels, x, y, size, alpha, width, height, color, legend)
        160                 color_labels = list(dataf[self.color_column].unique())
        161                 d = {k: col for k, col in zip(color_labels, self._colors)}
    --> 162                 dataf = dataf.assign(color=[d[lab] for lab in dataf[self.color_column]])
        163             self.source = ColumnDataSource(data=dataf)
        164             self.labels = labels
    
    ~/anaconda3/envs/nlp_fb_posts_topics/lib/python3.8/site-packages/hulearn/experimental/interactive.py in <listcomp>(.0)
        160                 color_labels = list(dataf[self.color_column].unique())
        161                 d = {k: col for k, col in zip(color_labels, self._colors)}
    --> 162                 dataf = dataf.assign(color=[d[lab] for lab in dataf[self.color_column]])
        163             self.source = ColumnDataSource(data=dataf)
        164             self.labels = labels
    
    KeyError: 'bulletin_board'
    

    Maybe using a colormap instead of a fixed set of colors would fix the issue?

    opened by nbeuchat 5
  • Can't draw with InteractiveCharts

    Can't draw with InteractiveCharts

    Hi, I'm trying the library just like I've seen on https://calmcode.io/human-learn/draw.html, but with my own data. This is what I got:

    from hulearn.experimental.interactive import InteractiveCharts
    clf = InteractiveCharts(df_labeled, labels="cluster")
    

    BokehJS 2.2.1 successfully loaded

    clf.add_chart(x='dst_ip',y='avg_duration')
    

    The graph appears, data is colored as expected and I can interact with it (zoom and so), but I can't draw the areas.

    I'm using Python 3.7.3, IPython 7.14.0 and Jupyter 5.7.8

    opened by jartigag 5
  • charts not showing up in Visual Studio Code notebook

    charts not showing up in Visual Studio Code notebook

    I am trying basically to reproduce the PyData Berlin environment using human-learn with sentence embeddings and UMAP so that I can draw boundaries, explore, and quickly label text data.

    The problem I am having is that the human-learn charts are not rendering in the VSC notebook. VSC is using Jupyter for the notebook and I am on Windows. I can render Pyplot, Seaborn, even Bokeh into the notebooks but the human-learn charts do not display:

    image

    Is anyone else having this issue? Is there some Jupyter extension I need or some Jupyter command I need to run? Bokeh is 2.3.2, human-learn is 0.3.1

    opened by mschmill 4
  • Running into a traceback error when importing the interactive charts module

    Running into a traceback error when importing the interactive charts module

    I am trying to run the interactive classifier notebook downloaded from the link at the bottom of this page - https://koaning.github.io/human-learn/guide/drawing-classifier/drawing.html.

    This is being run on a Windows x86-64 laptop, with the latest minconda3, python3.8 and jupyter-lab. I run into a traceback error on cell 3 from hulearn.experimental.interactive import InteractiveCharts, InteractiveChart

    ImportError                               Traceback (most recent call last)
    <ipython-input-3-9933ce75800d> in <module>()
    ----> 1 from hulearn.experimental.interactive import InteractiveCharts, InteractiveChart
    
    ImportError: cannot import name 'InteractiveChart' from 'hulearn.experimental.interactive' (C:\<mypath>\miniconda3\envs\myenv\lib\site-packages\hulearn\experimental\interactive.py)
    

    Not able to figure out what's up; issue reproduces on a unix environment (on Mac) as well.

    opened by aishnaga 4
  • Bokeh Port Error

    Bokeh Port Error

    Sometimes I hit this error:

    ERROR:bokeh.server.views.ws:Refusing websocket connection from Origin 'http://localhost:8889';                       use --allow-websocket-origin=localhost:8889 or set BOKEH_ALLOW_WS_ORIGIN=localhost:8889 to permit this; currently we allow origins {'localhost:8888'}
    WARNING:tornado.access:403 GET /ws (::1) 1.65ms
    

    Would be nice to get an automated fix for this.

    opened by koaning 3
  • geos_c.dll missing

    geos_c.dll missing

    from hulearn.preprocessing import InteractivePreprocessor
    tfm = InteractivePreprocessor(json_desc=charts.data())
    
    df.pipe(tfm.pandas_pipe).loc[lambda d: d['group'] != 0].sample(10)
    
    

    gives error :

    
    ---------------------------------------------------------------------------
    FileNotFoundError                         Traceback (most recent call last)
    ~\AppData\Local\Temp/ipykernel_28956/1501149949.py in <module>
    ----> 1 from hulearn.preprocessing import InteractivePreprocessor
          2 tfm = InteractivePreprocessor(json_desc=charts.data())
          3 
          4 df.pipe(tfm.pandas_pipe).loc[lambda d: d['group'] != 0].sample(10)
    
    ~\AppData\Roaming\Python\Python39\site-packages\hulearn\preprocessing\__init__.py in <module>
          1 from hulearn.preprocessing.pipetransformer import PipeTransformer
    ----> 2 from hulearn.preprocessing.interactivepreprocessor import InteractivePreprocessor
          3 
          4 __all__ = ["PipeTransformer", "InteractivePreprocessor"]
    
    ~\AppData\Roaming\Python\Python39\site-packages\hulearn\preprocessing\interactivepreprocessor.py in <module>
          4 import numpy as np
          5 import pandas as pd
    ----> 6 from shapely.geometry import Point
          7 from shapely.geometry.polygon import Polygon
          8 
    
    ~\AppData\Roaming\Python\Python39\site-packages\shapely\geometry\__init__.py in <module>
          2 """
          3 
    ----> 4 from .base import CAP_STYLE, JOIN_STYLE
          5 from .geo import box, shape, asShape, mapping
          6 from .point import Point, asPoint
    
    ~\AppData\Roaming\Python\Python39\site-packages\shapely\geometry\base.py in <module>
         17 
         18 from shapely.affinity import affine_transform
    ---> 19 from shapely.coords import CoordinateSequence
         20 from shapely.errors import WKBReadingError, WKTReadingError
         21 from shapely.geos import WKBWriter, WKTWriter
    
    ~\AppData\Roaming\Python\Python39\site-packages\shapely\coords.py in <module>
          6 from ctypes import byref, c_double, c_uint
          7 
    ----> 8 from shapely.geos import lgeos
          9 from shapely.topology import Validating
         10 
    
    ~\AppData\Roaming\Python\Python39\site-packages\shapely\geos.py in <module>
        147     if os.getenv('CONDA_PREFIX', ''):
        148         # conda package.
    --> 149         _lgeos = CDLL(os.path.join(sys.prefix, 'Library', 'bin', 'geos_c.dll'))
        150     else:
        151         try:
    
    ~\Anaconda3\envs\human-learn\lib\ctypes\__init__.py in __init__(self, name, mode, handle, use_errno, use_last_error, winmode)
        380 
        381         if handle is None:
    --> 382             self._handle = _dlopen(self._name, mode)
        383         else:
        384             self._handle = handle
    
    FileNotFoundError: Could not find module 'C:\Users\BORG7803\Anaconda3\envs\human-learn\Library\bin\geos_c.dll' (or one of its dependencies). Try using the full path with constructor syntax.
    
    opened by Borg93 2
  • AttributeError: module 'tornado.ioloop' has no attribute '_Selectable'

    AttributeError: module 'tornado.ioloop' has no attribute '_Selectable'

    Hi Vincent,

    I was particularly impressed by how we could classify the data by just drawing. Kudos to you.

    However, I have been trying to implement the same in a different dataset but it's repeatedly throwing the below error .

    I am also linking my notebook just in case : https://www.kaggle.com/nishantrock/notebook8935105440

    Do suggest why this error is happening. I've tried it multiple times but it throws the same error.


    AttributeError Traceback (most recent call last) in ----> 1 clf.add_chart(x = 'Health Indicator', y = 'Reco_Policy_Premium')

    /opt/conda/lib/python3.7/site-packages/hulearn/experimental/interactive.py in add_chart(self, x, y, size, alpha, width, height, legend) 97 ) 98 self.charts.append(chart) ---> 99 chart.show() 100 101 def data(self):

    /opt/conda/lib/python3.7/site-packages/hulearn/experimental/interactive.py in show(self) 199 200 def show(self): --> 201 show(self.app) 202 203 def _replace_xy(self, data):

    /opt/conda/lib/python3.7/site-packages/bokeh/io/showing.py in show(obj, browser, new, notebook_handle, notebook_url, **kw) 135 # in Tornado) just in order to show a non-server object 136 if is_application or callable(obj): --> 137 return run_notebook_hook(state.notebook_type, 'app', obj, state, notebook_url, **kw) 138 139 return _show_with_state(obj, state, browser, new, notebook_handle=notebook_handle)

    /opt/conda/lib/python3.7/site-packages/bokeh/io/notebook.py in run_notebook_hook(notebook_type, action, *args, **kw) 296 if _HOOKS[notebook_type][action] is None: 297 raise RuntimeError("notebook hook for %r did not install %r action" % notebook_type, action) --> 298 return _HOOKS[notebook_type][action](*args, **kw) 299 300 #-----------------------------------------------------------------------------

    /opt/conda/lib/python3.7/site-packages/bokeh/io/notebook.py in show_app(app, state, notebook_url, port, **kw) 463 464 from tornado.ioloop import IOLoop --> 465 from ..server.server import Server 466 467 loop = IOLoop.current()

    /opt/conda/lib/python3.7/site-packages/bokeh/server/server.py in 39 # External imports 40 from tornado import version as tornado_version ---> 41 from tornado.httpserver import HTTPServer 42 from tornado.ioloop import IOLoop 43

    /opt/conda/lib/python3.7/site-packages/tornado/httpserver.py in 30 31 from tornado.escape import native_str ---> 32 from tornado.http1connection import HTTP1ServerConnection, HTTP1ConnectionParameters 33 from tornado import httputil 34 from tornado import iostream

    /opt/conda/lib/python3.7/site-packages/tornado/http1connection.py in 32 from tornado import gen 33 from tornado import httputil ---> 34 from tornado import iostream 35 from tornado.log import gen_log, app_log 36 from tornado.util import GzipDecompressor

    /opt/conda/lib/python3.7/site-packages/tornado/iostream.py in 208 209 --> 210 class BaseIOStream(object): 211 """A utility class to write to and read from a non-blocking file or socket. 212

    /opt/conda/lib/python3.7/site-packages/tornado/iostream.py in BaseIOStream() 284 self._closed = False 285 --> 286 def fileno(self) -> Union[int, ioloop._Selectable]: 287 """Returns the file descriptor for this stream.""" 288 raise NotImplementedError()

    AttributeError: module 'tornado.ioloop' has no attribute '_Selectable'

    opened by 123nishant 2
  • Adding common accessor for changing Chart Title, Legend Names, x label, y label etc

    Adding common accessor for changing Chart Title, Legend Names, x label, y label etc

    Currently, the library does not support adding custom title rather the x and y labels passed to the Interactive chart becomes the title

    self.plot = figure(width=width, height=height, title=f"{x} vs. {y}")

    as shown above we can add common accessors to deal with this?

    opened by tvash 2
  • Please cover a regression example

    Please cover a regression example

    Hi Vincent. I'm super into this framework. As a domain expert, I see some helpful ise cases with this tool involving regression. However, I'm not confident to apply regression as no example are provided.

    opened by FrancyJGLisboa 1
  • Raise `ValueErrors` on incorrect plot input.

    Raise `ValueErrors` on incorrect plot input.

    I noticed on reviewing this PR that SingleInteractiveChart does not check if the inputs make sense with regards to the dataframe that is passed in. We don't want to create an extra SingleInteractiveChart under the InteractiveCharts object because this causes side effects (unneeded json data).

    Let's add some ValueErrors there.

    opened by koaning 0
Releases(0.2.5)
Owner
vincent d warmerdam
Solving problems involving data. Mostly NLP these days. AskMeAnything[tm].
vincent d warmerdam
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021]

Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021] Paper: https://arxiv.org/abs/2104.11208 Introduction Despite the significa

76 Dec 07, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Nicolas 304 Dec 28, 2022
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

jedibobo 3 Dec 28, 2022
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022
Jigsaw Rate Severity of Toxic Comments

Jigsaw Rate Severity of Toxic Comments

Guanshuo Xu 66 Nov 30, 2022
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone

Andrew Jesson 19 Jun 23, 2022