Camera calibration & 3D pose estimation tools for AcinoSet

Related tags

Deep LearningAcinoSet
Overview

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the WildCheetah

Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fred Nicolls, Alexander Mathis, Mackenzie W. Mathis, Amir Patel

AcinoSet is a dataset of free-running cheetahs in the wild that contains 119,490 frames of multi-view synchronized high-speed video footage, camera calibration files and 7,588 human-annotated frames. We utilize markerless animal pose estimation with DeepLabCut to provide 2D keypoints (in the 119K frames). Then, we use three methods that serve as strong baselines for 3D pose estimation tool development: traditional sparse bundle adjustment, an Extended Kalman Filter, and a trajectory optimization-based method we call Full Trajectory Estimation. The resulting 3D trajectories, human-checked 3D ground truth, and an interactive tool to inspect the data is also provided. We believe this dataset will be useful for a diverse range of fields such as ecology, robotics, biomechanics, as well as computer vision.

AcinoSet code by:

Prerequisites

  • Anaconda
  • The dependecies defined in conda_envs/*.yml

What we provide:

The following sections document how this was created by the code within this repo:

Pre-trained DeepLabCut Model:

  • You can use the full_cheetah model provided in the DLC Model Zoo to re-create the existing H5 files (or on new videos).
  • Here, we also already provide the videos and H5 outputs of all frames, here.

Labelling Cheetah Body Positions:

If you want to label more cheetah data, you can also do so within the DeepLabCut framework. We provide a conda file for an easy-install, but please see the repo for installation and instructions for use.

$ conda env create -f conda_envs/DLC.yml -n DLC

AcinoSet Setup:

Navigate to the AcinoSet folder and build the environment:

$ conda env create -f conda_envs/acinoset.yml

Launch Jupyter Lab:

$ jupyter lab

Camera Calibration and 3D Reconstruction:

Intrinsic and Extrinsic Calibration:

Open calib_with_gui.ipynb and follow the instructions.

Alternatively, if the checkerboard points detected in calib_with_gui.ipynb are unsatisfactory, open saveMatlabPointsForAcinoSet.m in MATLAB and follow the instructions. Note that this requires MATLAB 2020b or later.

Optionally: Manually defining the shared points for extrinsic calibration:

You can manually define points on each video in a scene with Argus Clicker. A quick tutorial is found here.

Build the environment:

$ conda env create -f conda_envs/argus.yml

Launch Argus Clicker:

$ python
>>> import argus_gui as ag; ag.ClickerGUI()

Keyboard Shortcuts (See documentation here for more):

  • G ... to a specific frame
  • X ... to switch the sync mode setting the windows to the same frame
  • O ... to bring up the options dialog
  • S ... to bring up a save dialog

Then you must convert the output data from Argus to work with the rest of the pipeline (here is an example):

$ python argus_converter.py \
    --data_dir ../data/2019_03_07/extrinsic_calib/argus_folder

3D Reconstruction:

To reconstruct a cheetah into 3D, we offer three different pose estimation options on top of standard triangulation (TRI):

  • Sparse Bundle Adjustment (SBA)
  • Extended Kalman Filter (EKF)
  • Full Trajectory Estimation (FTE)

You can run each option seperately. For example, simply open FTE.ipynb and follow the instructions! Otherwise, you can run all types of refinements in one go:

python all_optimizations.py --data_dir 2019_03_09/lily/run --start_frame 70 --end_frame 170 --dlc_thresh 0.5

NB: When running the FTE, we recommend that you use the MA86 solver. For details on how to set this up, see these instructions.

Citation

We ask that if you use our code or data, kindly cite (and note it is accepted to ICRA 2021, so please check back for an updated ref):

@misc{joska2021acinoset,
      title={AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild}, 
      author={Daniel Joska and Liam Clark and Naoya Muramatsu and Ricardo Jericevich and Fred Nicolls and Alexander Mathis and Mackenzie W. Mathis and Amir Patel},
      year={2021},
      eprint={2103.13282},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
African Robotics Unit
A grouping of robotics researchers at the University of Cape Town who study problems we as Africans are uniquely positioned to solve
African Robotics Unit
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 01, 2023
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
A simple, fully convolutional model for real-time instance segmentation.

You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██

Daniel Bolya 4.6k Dec 30, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018)

Junction Tree Variational Autoencoder for Molecular Graph Generation Official implementation of our Junction Tree Variational Autoencoder https://arxi

Wengong Jin 418 Jan 07, 2023
Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras

Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras which will then be used to generate residuals

Federico Lopez 2 Jan 14, 2022
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Mining the Social Web, 3rd Edition The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Am

Mikhail Klassen 838 Jan 01, 2023
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
A curated list of awesome projects and resources related fastai

A curated list of awesome projects and resources related fastai

Tanishq Abraham 138 Dec 22, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
Image-popularity-score - A novel deep regression method for image scoring.

Image-popularity-score - A novel deep regression method for image scoring.

Shoaib ahmed 1 Dec 26, 2021