Reproducing Results from A Hybrid Approach to Targeting Social Assistance

Overview
title author date output
Reproducing Results from A Hybrid Approach to Targeting Social Assistance
Lendie Follett and Heath Henderson
12/28/2021
html_document

Introduction

This repository contains the code and data required to reproduce the results found in "A Hybrid Approach to Targeting Social Assistance". Specifically, to run simulation studies that estimate out of sample error rates using the Hybrid, Hybrid-AI, Hybrid-EC, and Hybrid-DU models on data from Indonesia (Alatas et al. (2012)) and Burkina Faso (Hillebrecht et al. (2020)).

Requirements

To install the required R packages, run the following code in R:

install.packages(c("truncnorm", "mvtnorm", "LaplacesDemon", "MASS", "dplyr",
                   "ggplot2", "Rcpp", "reshape2", "caret", "parallel"))

Data

We use two sources of data containing community based rankings, survey information, and consumption/expenditure data. This data can be found in the following sub-directories:

list.files("Data/Burkina Faso/Cleaning/")
## [1] "cleaning.do"              "hillebrecht.csv"          "hillebrecht.dta"         
## [4] "hillebrecht(missing).csv" "hillebrecht(missing).dta" "variables.csv"
list.files("Data/Indonesia/Cleaning/")
##  [1] "alatas.csv"                               
##  [2] "alatas.dta"                               
##  [3] "alatas(missing).csv"                      
##  [4] "alatas(missing).dta"                      
##  [5] "cleaning.do"                              
##  [6] "FAO Dietary Diversity Guidelines 2011.pdf"
##  [7] "food.dta"                                 
##  [8] "notes.docx"                               
##  [9] "ranks.dta"                                
## [10] "variables.csv"                            
## [11] "xvars.dta"

The data files that will be called are "hillebrecht.csv" and "alatas.csv".

Reproduce

  1. Run run_simulations.R to reproduce error rate results and coefficient estimate results.
  • Indonesia Analysis/all_results.csv
  • Indonesia Analysis/all_coef.csv
  • Indonesia Analysis/coef_total_sample.csv
  • Indonesia Analysis/CB_beta_rank_CI_noelite.csv
  • Indonesia Analysis/CB_beta_rank_CI.csv
  • Burkina Faso Analysis/all_results.csv
  • Burkina Faso Analysis/all_coef.csv
  • Burkina Faso Analysis/coef_total_sample.csv
  • Burkina Faso Analysis/CB_beta_rank_CI_noelite.csv
  • Burkina Faso Analysis/CB_beta_rank_CI.csv

The above files can be used to generate plots found in the manuscript:

  1. Run Burkina Faso Analysis/make_plots.R to reproduce error rate plots and coefficient plots for the Burkina Faso data.
  • Burkina Faso Analysis/coef_score_EC_hillebrecht.pdf
  • Burkina Faso Analysis/coef_score_hillebrecht.pdf (Figure 1)
  • Burkina Faso Analysis/ER_hybrid_AI.pdf (Figure 7 a)
  • Burkina Faso Analysis/ER_hybrid_DU.pdf (Figure 8)
  • Burkina Faso Analysis/ER_hybrid.pdf (Figure 3 a)
  1. Run Indonesia Analysis/make_plots.R to reproduce error rate plots and coefficient plots for the Indonesia data.
  • Indonesia Analysis/coef_score_EC_hillebrecht.pdf (Figure 5)
  • Indonesia Analysis/coef_score_hillebrecht.pdf (Figure 2)
  • Indonesia Analysis/ER_hybrid_AI.pdf (Figure 7 b)
  • Indonesia Analysis/ER_hybrid_EC.pdf (Figure 6)
  • Indonesia Analysis/ER_hybrid.pdf (Figure 3 b)
  1. Run Burkina Faso Analysis/run_mcmc_weights.R to reproduce heterogeneous ranker results.
  • Burkina Faso Analysis/heter_weights_omega.pdf (Figure 4 a)
  • Burkina Faso Analysis/heter_weights_corr.pdf (Figure 4 b)

References

Alatas, V., Banerjee, A., Hanna, R., Olken, B., and Tobias, J. (2013).Targeting the poor: Evidence from a field experiment in Indonesia.Harvard Dataverse,https://doi.org/10.7910/DVN/M7SKQZ, V5.

Hillebrecht, M., Klonner, S., Pacere, N. A., and Souares, A. (2020b). Community-basedversus statistical targeting of anti-poverty programs: Evidence from Burkina Faso.Journalof African Economies, 29(3):271–305

Owner
Lendie Follett
Lendie Follett
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference Abeßer, J. & Müller, M. Towards Audio Domain Adapt

Jakob Abeßer 2 Jul 06, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
This is a simple plugin for Vim that allows you to use OpenAI Codex.

🤖 Vim Codex An AI plugin that does the work for you. This is a simple plugin for Vim that will allow you to use OpenAI Codex. To use this plugin you

Tom Dörr 195 Dec 28, 2022
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

Media Computing Group @ Nankai University 537 Jan 07, 2023
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
Template repository for managing machine learning research projects built with PyTorch-Lightning

Tutorial Repository with a minimal example for showing how to deploy training across various compute infrastructure.

Sidd Karamcheti 3 Feb 11, 2022
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

ycj_project 1 Jan 18, 2022
ECLARE: Extreme Classification with Label Graph Correlations

ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal

Extreme Classification 35 Nov 06, 2022
Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

19 Dec 12, 2022
Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Piggyback: https://arxiv.org/abs/1801.06519 Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Arun Mallya 165 Nov 22, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
PyTorch implementation of SIFT descriptor

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022