Reproducing Results from A Hybrid Approach to Targeting Social Assistance

Overview
title author date output
Reproducing Results from A Hybrid Approach to Targeting Social Assistance
Lendie Follett and Heath Henderson
12/28/2021
html_document

Introduction

This repository contains the code and data required to reproduce the results found in "A Hybrid Approach to Targeting Social Assistance". Specifically, to run simulation studies that estimate out of sample error rates using the Hybrid, Hybrid-AI, Hybrid-EC, and Hybrid-DU models on data from Indonesia (Alatas et al. (2012)) and Burkina Faso (Hillebrecht et al. (2020)).

Requirements

To install the required R packages, run the following code in R:

install.packages(c("truncnorm", "mvtnorm", "LaplacesDemon", "MASS", "dplyr",
                   "ggplot2", "Rcpp", "reshape2", "caret", "parallel"))

Data

We use two sources of data containing community based rankings, survey information, and consumption/expenditure data. This data can be found in the following sub-directories:

list.files("Data/Burkina Faso/Cleaning/")
## [1] "cleaning.do"              "hillebrecht.csv"          "hillebrecht.dta"         
## [4] "hillebrecht(missing).csv" "hillebrecht(missing).dta" "variables.csv"
list.files("Data/Indonesia/Cleaning/")
##  [1] "alatas.csv"                               
##  [2] "alatas.dta"                               
##  [3] "alatas(missing).csv"                      
##  [4] "alatas(missing).dta"                      
##  [5] "cleaning.do"                              
##  [6] "FAO Dietary Diversity Guidelines 2011.pdf"
##  [7] "food.dta"                                 
##  [8] "notes.docx"                               
##  [9] "ranks.dta"                                
## [10] "variables.csv"                            
## [11] "xvars.dta"

The data files that will be called are "hillebrecht.csv" and "alatas.csv".

Reproduce

  1. Run run_simulations.R to reproduce error rate results and coefficient estimate results.
  • Indonesia Analysis/all_results.csv
  • Indonesia Analysis/all_coef.csv
  • Indonesia Analysis/coef_total_sample.csv
  • Indonesia Analysis/CB_beta_rank_CI_noelite.csv
  • Indonesia Analysis/CB_beta_rank_CI.csv
  • Burkina Faso Analysis/all_results.csv
  • Burkina Faso Analysis/all_coef.csv
  • Burkina Faso Analysis/coef_total_sample.csv
  • Burkina Faso Analysis/CB_beta_rank_CI_noelite.csv
  • Burkina Faso Analysis/CB_beta_rank_CI.csv

The above files can be used to generate plots found in the manuscript:

  1. Run Burkina Faso Analysis/make_plots.R to reproduce error rate plots and coefficient plots for the Burkina Faso data.
  • Burkina Faso Analysis/coef_score_EC_hillebrecht.pdf
  • Burkina Faso Analysis/coef_score_hillebrecht.pdf (Figure 1)
  • Burkina Faso Analysis/ER_hybrid_AI.pdf (Figure 7 a)
  • Burkina Faso Analysis/ER_hybrid_DU.pdf (Figure 8)
  • Burkina Faso Analysis/ER_hybrid.pdf (Figure 3 a)
  1. Run Indonesia Analysis/make_plots.R to reproduce error rate plots and coefficient plots for the Indonesia data.
  • Indonesia Analysis/coef_score_EC_hillebrecht.pdf (Figure 5)
  • Indonesia Analysis/coef_score_hillebrecht.pdf (Figure 2)
  • Indonesia Analysis/ER_hybrid_AI.pdf (Figure 7 b)
  • Indonesia Analysis/ER_hybrid_EC.pdf (Figure 6)
  • Indonesia Analysis/ER_hybrid.pdf (Figure 3 b)
  1. Run Burkina Faso Analysis/run_mcmc_weights.R to reproduce heterogeneous ranker results.
  • Burkina Faso Analysis/heter_weights_omega.pdf (Figure 4 a)
  • Burkina Faso Analysis/heter_weights_corr.pdf (Figure 4 b)

References

Alatas, V., Banerjee, A., Hanna, R., Olken, B., and Tobias, J. (2013).Targeting the poor: Evidence from a field experiment in Indonesia.Harvard Dataverse,https://doi.org/10.7910/DVN/M7SKQZ, V5.

Hillebrecht, M., Klonner, S., Pacere, N. A., and Souares, A. (2020b). Community-basedversus statistical targeting of anti-poverty programs: Evidence from Burkina Faso.Journalof African Economies, 29(3):271–305

Owner
Lendie Follett
Lendie Follett
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
BED: A Real-Time Object Detection System for Edge Devices

BED: A Real-Time Object Detection System for Edge Devices About this project Thi

Data Analytics Lab at Texas A&M University 44 Nov 18, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging This repository contains an implementation

Computational Photography Lab @ SFU 1.1k Jan 02, 2023
2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup)智能人机交互自然语言理解赛道第二名参赛解决方案

2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup) 智能人机交互自然语言理解赛道第二名解决方案 比赛网址: CCIR-Cup-智能人机交互自然语言理解 1.依赖环境: python==3.8 torch==1.7.1+cu110 numpy==1.19.2 transformers=

JinXiang 22 Oct 29, 2022
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.

BigGAN Audio Visualizer Description This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generat

Rush Kapoor 2 Nov 21, 2022
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
Beancount-mercury - Beancount importer for Mercury Startup Checking

beancount-mercury beancount-mercury provides an Importer for converting CSV expo

Michael Lynch 4 Oct 31, 2022
This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" ([email protected])

GP-VAE This repository provides datasets and code for preprocessing, training and testing models for the paper: Diverse Text Generation via Variationa

Wanyu Du 18 Dec 29, 2022
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL) This repository contains all source code used to generate the results in the article "

Charlotte Loh 3 Jul 23, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"

Surface Form Competition This is the official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right" We p

Peter West 46 Dec 23, 2022