ConvMAE: Masked Convolution Meets Masked Autoencoders

Overview

ConvMAE

ConvMAE: Masked Convolution Meets Masked Autoencoders

Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1,

1 Shanghai AI Laboratory, 2 MMLab, CUHK, 3 Sensetime Research.

This repo is the official implementation of ConvMAE: Masked Convolution Meets Masked Autoencoders. It currently concludes codes and models for the following tasks:

ImageNet Pretrain: See PRETRAIN.md.
ImageNet Finetune: See FINETUNE.md.
Object Detection: See DETECTION.md.
Semantic Segmentation: See SEGMENTATION.md.

Updates

16/May/2022

The supported codes and models for COCO object detection and instance segmentation are available.

11/May/2022

  1. Pretrained models on ImageNet-1K for ConvMAE.
  2. The supported codes and models for ImageNet-1K finetuning and linear probing are provided.

08/May/2022

The preprint version is public at arxiv.

Introduction

ConvMAE framework demonstrates that multi-scale hybrid convolution-transformer can learn more discriminative representations via the mask auto-encoding scheme.

  • We present the strong and efficient self-supervised framework ConvMAE, which is easy to implement but show outstanding performances on downstream tasks.
  • ConvMAE naturally generates hierarchical representations and exhibit promising performances on object detection and segmentation.
  • ConvMAE-Base improves the ImageNet finetuning accuracy by 1.4% compared with MAE-Base. On object detection with Mask-RCNN, ConvMAE-Base achieves 53.2 box AP and 47.1 mask AP with a 25-epoch training schedule while MAE-Base attains 50.3 box AP and 44.9 mask AP with 100 training epochs. On ADE20K with UperNet, ConvMAE-Base surpasses MAE-Base by 3.6 mIoU (48.1 vs. 51.7).

tenser

Pretrain on ImageNet-1K

The following table provides pretrained checkpoints and logs used in the paper.

ConvMAE-Base
pretrained checkpoints download
logs download

Main Results on ImageNet-1K

Models #Params(M) Supervision Encoder Ratio Pretrain Epochs FT [email protected](%) LIN [email protected](%) FT logs/weights LIN logs/weights
BEiT 88 DALLE 100% 300 83.0 37.6 - -
MAE 88 RGB 25% 1600 83.6 67.8 - -
SimMIM 88 RGB 100% 800 84.0 56.7 - -
MaskFeat 88 HOG 100% 300 83.6 N/A - -
data2vec 88 RGB 100% 800 84.2 N/A - -
ConvMAE-B 88 RGB 25% 1600 85.0 70.9 log/weight

Main Results on COCO

Mask R-CNN

Models Pretrain Pretrain Epochs Finetune Epochs #Params(M) FLOPs(T) box AP mask AP logs/weights
Swin-B IN21K w/ labels 300 36 109 0.7 51.4 45.4 -
Swin-L IN21K w/ labels 300 36 218 1.1 52.4 46.2 -
MViTv2-B IN21K w/ labels 300 36 73 0.6 53.1 47.4 -
MViTv2-L IN21K w/ labels 300 36 239 1.3 53.6 47.5 -
Benchmarking-ViT-B IN1K w/o labels 1600 100 118 0.9 50.4 44.9 -
Benchmarking-ViT-L IN1K w/o labels 1600 100 340 1.9 53.3 47.2 -
ViTDet IN1K w/o labels 1600 100 111 0.8 51.2 45.5 -
MIMDet-ViT-B IN1K w/o labels 1600 36 127 1.1 51.5 46.0 -
MIMDet-ViT-L IN1K w/o labels 1600 36 345 2.6 53.3 47.5 -
ConvMAE-B IN1K w/o lables 1600 25 104 0.9 53.2 47.1 log/weight

Main Results on ADE20K

UperNet

Models Pretrain Pretrain Epochs Finetune Iters #Params(M) FLOPs(T) mIoU logs/weights
DeiT-B IN1K w/ labels 300 16K 163 0.6 45.6 -
Swin-B IN1K w/ labels 300 16K 121 0.3 48.1 -
MoCo V3 IN1K 300 16K 163 0.6 47.3 -
DINO IN1K 400 16K 163 0.6 47.2 -
BEiT IN1K+DALLE 1600 16K 163 0.6 47.1 -
PeCo IN1K 300 16K 163 0.6 46.7 -
CAE IN1K+DALLE 800 16K 163 0.6 48.8 -
MAE IN1K 1600 16K 163 0.6 48.1 -
ConvMAE-B IN1K 1600 16K 153 0.6 51.7 soon

Main Results on Kinetics-400

Models Pretrain Epochs Finetune Epochs #Params(M) Top1 Top5 logs/weights
VideoMAE-B 200 100 87 77.8
VideoMAE-B 800 100 87 79.4
VideoMAE-B 1600 100 87 79.8
VideoMAE-B 1600 100 (w/ Repeated Aug) 87 80.7 94.7
SpatioTemporalLearner-B 800 150 (w/ Repeated Aug) 87 81.3 94.9
VideoConvMAE-B 200 100 86 80.1 94.3 Soon
VideoConvMAE-B 800 100 86 81.7 95.1 Soon
VideoConvMAE-B-MSD 800 100 86 82.7 95.5 Soon

Main Results on Something-Something V2

Models Pretrain Epochs Finetune Epochs #Params(M) Top1 Top5 logs/weights
VideoMAE-B 200 40 87 66.1
VideoMAE-B 800 40 87 69.3
VideoMAE-B 2400 40 87 70.3
VideoConvMAE-B 200 40 86 67.7 91.2 Soon
VideoConvMAE-B 800 40 86 69.9 92.4 Soon
VideoConvMAE-B-MSD 800 40 86 70.7 93.0 Soon

Getting Started

Prerequisites

  • Linux
  • Python 3.7+
  • CUDA 10.2+
  • GCC 5+

Training and evaluation

Acknowledgement

The pretraining and finetuning of our project are based on DeiT and MAE. The object detection and semantic segmentation parts are based on MIMDet and MMSegmentation respectively. Thanks for their wonderful work.

License

ConvMAE is released under the MIT License.

Citation

@article{gao2022convmae,
  title={ConvMAE: Masked Convolution Meets Masked Autoencoders},
  author={Gao, Peng and Ma, Teli and Li, Hongsheng and Dai, Jifeng and Qiao, Yu},
  journal={arXiv preprint arXiv:2205.03892},
  year={2022}
}
Owner
Alpha VL Team of Shanghai AI Lab
Alpha VL Team of Shanghai AI Lab
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Marcel R. 349 Aug 06, 2022
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
Benchmark tools for Compressive LiDAR-to-map registration

Benchmark tools for Compressive LiDAR-to-map registration This repo contains the released version of code and datasets used for our IROS 2021 paper: "

Allie 9 Nov 24, 2022
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
Anomaly detection in multi-agent trajectories: Code for training, evaluation and the OpenAI highway simulation.

Anomaly Detection in Multi-Agent Trajectories for Automated Driving This is the official project page including the paper, code, simulation, baseline

12 Dec 02, 2022
PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision.

PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{CV2018, author = {Donny You ( Donny You 40 Sep 14, 2022

NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)

NAS-FCOS: Fast Neural Architecture Search for Object Detection This project hosts the train and inference code with pretrained model for implementing

Ning Wang 180 Dec 06, 2022
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
Jigsaw Rate Severity of Toxic Comments

Jigsaw Rate Severity of Toxic Comments

Guanshuo Xu 66 Nov 30, 2022
DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation

DFFNet Paper DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation. Xiangyan Tang, Wenxuan Tu, Keqiu Li, J

4 Sep 23, 2022
An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicity.

Fast Face Classification (F²C) This is the code of our paper An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicit

33 Jun 27, 2021
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
An open source python library for automated feature engineering

"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to

alteryx 6.4k Jan 03, 2023
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

65 Dec 22, 2022
Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

TANG, shixiang 6 Nov 25, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

Vishal R 1 Nov 16, 2021