The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Overview

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long)

This is the repository for baseline models and annotated data for this paper: Akari Asai and Eunsol Choi. Challenges in Information Seeking QA:Unanswerable Questions and Paragraph Retrieval. In: Proceedings of ACL. 2021

In the paper, we carefully analyze unanswerable questions in information-seeking QA dataset (i.e., Natural Questions and TyDi QA) and attempt to identify the remaining headrooms. We conduct both a range of controlled experiments and insensitive human annotations on around 800 examples across across 6 languages.

Annotated data

In human_annotated_data, we provide human annotated data from TyDi QA and Natural Questions.

Dataset language # of annotated questions file name
Natural Questions English 450 NQ.tsv
TyDi QA Bengali 50 TyDi-Bn.tsv
TyDi QA Japanese 100 TyDi-Ja.tsv
TyDi QA Korean 100 TyDi-Bn.tsv
TyDi QA Russian 50 TyDi-Ru.tsv
TyDi QA Telugu 50 TyDi-Te.tsv

Baselines

In this work, we conduct several baseline experiments to identify the remaining headrooms in information-seeking QA. This repository include baselines for question only baseline. See the training and evaluation details in README.md. We thank the authors of Riki Net, Retro-reader, and ETC for providing their models' predictions that are used to analyze those state-of-the-art models behaviors.

Citation and Contact

If you find this codebase is useful or use in your work, please cite our paper.

@inproceedings{
asai2020learning,
title={Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval},
author={Akari Asai and Eunsol Choi},
booktitle={ACL-IJCNLP},
year={2021}
}

Please contact Akari Asai (@AkariAsai, akari[at]cs.washington.edu) for questions and suggestions.

Owner
Akari Asai
PhD student at @uwnlp . NLP & ML.
Akari Asai
reimpliment of DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation

DFANet This repo is an unofficial pytorch implementation of DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation log 2019.4.16 After 48

shen hui xiang 248 Oct 21, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021) Dataset License This work is l

DongYoung Kim 33 Jan 04, 2023
Original Implementation of Prompt Tuning from Lester, et al, 2021

Prompt Tuning This is the code to reproduce the experiments from the EMNLP 2021 paper "The Power of Scale for Parameter-Efficient Prompt Tuning" (Lest

Google Research 282 Dec 28, 2022
U-Net Implementation: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch

U-Net Implementation By Christopher Ley This is my interpretation and implementation of the famous paper "U-Net: Convolutional Networks for Biomedical

Christopher Ley 1 Jan 06, 2022
Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

23 Oct 17, 2022
Acoustic mosquito detection code with Bayesian Neural Networks

HumBugDB Acoustic mosquito detection with Bayesian Neural Networks. Extract audio or features from our large-scale dataset on Zenodo. This repository

31 Nov 28, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
This is the code for "HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields".

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields This is the code for "HyperNeRF: A Higher-Dimensional

Google 702 Jan 02, 2023
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
Roadmap to becoming a machine learning engineer in 2020

Roadmap to becoming a machine learning engineer in 2020, inspired by web-developer-roadmap.

Chris Hoyean Song 1.7k Dec 29, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
[ACM MM 2021] Diverse Image Inpainting with Bidirectional and Autoregressive Transformers

Diverse Image Inpainting with Bidirectional and Autoregressive Transformers Installation pip install -r requirements.txt Dataset Preparation Given the

Yingchen Yu 25 Nov 09, 2022
Extremely easy multi instancing software for minecraft speedrunning.

Easy Multi Extremely easy multi/single instancing software for minecraft speedrunning. A couple of goals of this project: Setup multi in minutes No fi

Duncan 8 Jul 16, 2022