DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

Overview

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang, Jie Zhou, Jiwen Lu,

This repository contains PyTorch implementation for DenseCLIP.

DenseCLIP is a new framework for dense prediction by implicitly and explicitly leveraging the pre-trained knowledge from CLIP. Specifically, we convert the original image-text matching problem in CLIP to a pixel-text matching problem and use the pixel-text score maps to guide the learning of dense prediction models. By further using the contextual information from the image to prompt the language model, we are able to facilitate our model to better exploit the pre-trained knowledge. Our method is model-agnostic, which can be applied to arbitrary dense prediction systems and various pre-trained visual backbones including both CLIP models and ImageNet pre-trained models.

intro

Our code is based on mmsegmentation and mmdetection and timm.

[Project Page] [arXiv]

Usage

Requirements

  • torch>=1.8.0
  • torchvision
  • timm
  • mmcv-full==1.3.17
  • mmseg==0.19.0
  • mmdet==2.17.0
  • fvcore

To use our code, please first install the mmcv-full and mmseg/mmdet following the official guidelines (mmseg, mmdet) and prepare the datasets accordingly.

Pre-trained CLIP Models

Download the pre-trained CLIP models (RN50.pt, RN101.pt, VIT-B-16.pt) and save them to the pretrained folder.

Segmentation

Model Zoo

We provide DenseCLIP models for Semantic FPN framework.

Model FLOPs (G) Params (M) mIoU(SS) mIoU(MS) config url
RN50-CLIP 248.8 31.0 36.9 43.5 config -
RN50-DenseCLIP 269.2 50.3 43.5 44.7 config Tsinghua Cloud
RN101-CLIP 326.6 50.0 42.7 44.3 config -
RN101-DenseCLIP 346.3 67.8 45.1 46.5 config Tsinghua Cloud
ViT-B-CLIP 1037.4 100.8 49.4 50.3 config -
ViT-B-DenseCLIP 1043.1 105.3 50.6 51.3 config Tsinghua Cloud

Training & Evaluation on ADE20K

To train the DenseCLIP model based on CLIP ResNet-50, run:

bash dist_train.sh configs/denseclip_fpn_res50_512x512_80k.py 8

To evaluate the performance with multi-scale testing, run:

bash dist_test.sh configs/denseclip_fpn_res50_512x512_80k.py /path/to/checkpoint 8 --eval mIoU --aug-test

To better measure the complexity of the models, we provide a tool based on fvcore to accurately compute the FLOPs of torch.einsum and other operations:

python get_flops.py /path/to/config --fvcore

You can also remove the --fvcore flag to obtain the FLOPs measured by mmcv for comparisons.

Detection

Model Zoo

We provide models for both RetinaNet and Mask-RCNN framework.

RetinaNet
Model FLOPs (G) Params (M) box AP config url
RN50-CLIP 265 38 36.9 config -
RN50-DenseCLIP 285 60 37.8 config Tsinghua Cloud
RN101-CLIP 341 57 40.5 config -
RN101-DenseCLIP 360 78 41.1 config Tsinghua Cloud
Mask R-CNN
Model FLOPs (G) Params (M) box AP mask AP config url
RN50-CLIP 301 44 39.3 36.8 config -
RN50-DenseCLIP 327 67 40.2 37.6 config Tsinghua Cloud
RN101-CLIP 377 63 42.2 38.9 config -
RN101-DenseCLIP 399 84 42.6 39.6 config Tsinghua Cloud

Training & Evaluation on COCO

To train our DenseCLIP-RN50 using RetinaNet framework, run

 bash dist_train.sh configs/retinanet_denseclip_r50_fpn_1x_coco.py 8

To evaluate the box AP of RN50-DenseCLIP (RetinaNet), run

bash dist_test.sh configs/retinanet_denseclip_r50_fpn_1x_coco.py /path/to/checkpoint 8 --eval bbox

To evaluate both the box AP and the mask AP of RN50-DenseCLIP (Mask-RCNN), run

bash dist_test.sh configs/mask_rcnn_denseclip_r50_fpn_1x_coco.py /path/to/checkpoint 8 --eval bbox segm

License

MIT License

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{rao2021denseclip,
  title={DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting},
  author={Rao, Yongming and Zhao, Wenliang and Chen, Guangyi and Tang, Yansong and Zhu, Zheng and Huang, Guan and Zhou, Jie and Lu, Jiwen},
  journal={arXiv preprint arXiv:2112.01518},
  year={2021}
}
Owner
Yongming Rao
Yongming Rao
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

20 Jun 08, 2022
Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

37 Dec 03, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Neural network pruning for finding a sparse computational model for controlling a biological motor task.

MothPruning Scientific Overview Originally inspired by biological nervous systems, deep neural networks (DNNs) are powerful computational tools for mo

Olivia Thomas 0 Dec 14, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection

DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection Code for our Paper DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Obje

Steven Lang 58 Dec 19, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li

DV Lab 39 Nov 23, 2022
YOLOX-CondInst - Implement CondInst which is a instances segmentation method on YOLOX

YOLOX CondInst -- YOLOX 实例分割 前言 本项目是自己学习实例分割时,复现的代码. 通过自己编程,让自己对实例分割有更进一步的了解。 若想

DDGRCF 16 Nov 18, 2022
A modular, research-friendly framework for high-performance and inference of sequence models at many scales

T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of

Google Research 1.1k Jan 08, 2023
Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI)

Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI) Preparation Clone the Synchronized-BatchNorm-P

Fangneng Zhan 12 Aug 10, 2022
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Hao Tan 74 Dec 03, 2022
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
Prototype-based Incremental Few-Shot Semantic Segmentation

Prototype-based Incremental Few-Shot Semantic Segmentation Fabio Cermelli, Massimiliano Mancini, Yongqin Xian, Zeynep Akata, Barbara Caputo -- BMVC 20

Fabio Cermelli 21 Dec 29, 2022
给yolov5加个gui界面,使用pyqt5,yolov5是5.0版本

博文地址 https://xugaoxiang.com/2021/06/30/yolov5-pyqt5 代码执行 项目中使用YOLOv5的v5.0版本,界面文件是project.ui pip install -r requirements.txt python main.py 图片检测 视频检测

Xu GaoXiang 215 Dec 30, 2022
Development of IP code based on VIPs and AADM

Sparse Implicit Processes In this repository we include the two different versions of the SIP code developed for the article Sparse Implicit Processes

1 Aug 22, 2022