NeurIPS 2021 Datasets and Benchmarks Track

Related tags

Deep LearningAP-10K
Overview

AP-10K: A Benchmark for Animal Pose Estimation in the Wild

Introduction | Updates | Overview | Download | Training Code | Key Questions | License

Introduction

This repository is the official reporisity of AP-10K: A Benchmark for Animal Pose Estimation in the Wild (NeurIPS 2021 Datasets and Benchmarks Track). It contains the introduction, annotation files, and code for the dataset AP-10K, which is the first large-scale dataset for general animal pose estimation. AP-10K consists of 10,015 images collected and filtered from 23 animal families and 54 species, with high-quality keypoint annotations. We also contain another about 50k images with family and species labels. The dataset can be used for supervised learning, cross-domain transfer learning, and intra- and inter-family domain. It can also be used in self-supervised learning, semi-supervised learning, etc. The annotation files are provided following the COCO style.

Updates

01/11/2021 We have uploaded the corresponding code and pretrained models for the usage of AP-10K dataset!

01/11/2021 We have updated the dataset! It now has 54 species for training!

01/11/2021 The AP-10K dataset is integrated into mmpose! Please enjoy it!

11/10/2021 The paper is accepted to NeurIPS 2021 Datasets and Benchmarks Track!

31/08/2021 The paper is post on arxiv! We have uploaded the annotation file!

Overview

keypoint definition

Keypoint Description Keypoint Description
1 Left Eye 2 Right Eye
3 Nose 4 Neck
5 Root of Tail 6 Left Shoulder
7 Left Elbow 8 Left Front Paw
9 Right Shoulder 10 Right Elbow
11 Right Front Paw 12 Left Hip
13 Left Knee 14 Left Back Paw
15 Right Hip 16 Right Knee
17 Right Back Paw

Annotations Overview

Image Background

Id Background type Id Background type
1 grass or savanna 2 forest or shrub
3 mud or rock 4 snowfield
5 zoo or human habitation 6 swamp or rivderside
7 desert or gobi 8 mugshot

Download

The dataset and corresponding files can be downloaded from

[Google Drive] [Baidu Pan] (code: 6uz6)

(Optional) The full version with both labeled and unlabeled images can be downloaded with the script provided here

[Google Drive] [Baidu Pan] (code: 5lxi)

Training Code

Here we provide the example of training models with the AP-10K dataset. The code is based on the mmpose project.

Installation

Please refer to install.md for Installation.

Dataset Preparation

Please download the dataset from the Download Section, and please extract the dataset under the data folder, e.g.,

mkdir data
unzip ap-10k.zip -d data/
mv data/ap-10k data/ap10k

The extracted dataset should be looked like:

AP-10K
├── mmpose
├── docs
├── tests
├── tools
├── configs
|── data
    │── ap10k
        │-- annotations
        │   │-- ap10k-train-split1.json
        │   |-- ap10k-train-split2.json
        │   |-- ap10k-train-split3.json
        │   │-- ap10k-val-split1.json
        │   |-- ap10k-val-split2.json
        │   |-- ap10k-val-split3.json
        │   |-- ap10k-test-split1.json
        │   |-- ap10k-test-split2.json
        │   |-- ap10k-test-split3.json
        │-- data
        │   │-- 000000000001.jpg
        │   │-- 000000000002.jpg
        │   │-- ...

Inference

The checkpoints can be downloaded from HRNet-w32, HRNet-w48, ResNet-50, ResNet-101.

python tools/test.py <CONFIG_FILE> <DET_CHECKPOINT_FILE>

Training

bash tools/dist_train.sh <CONFIG_FILE> <GPU_NUM>

For example, to train the HRNet-w32 model with 1 GPU, please run:

bash tools/dist_train.sh configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/ap10k/hrnet_w32_ap10k_256x256.py 1

Key Questions

1. For what purpose was the dataset created?

AP-10K is created to facilitate research in the area of animal pose estimation. It is important to study several challenging questions in the context of more training data from diverse species are available, such as:

  1. how about the performance of different representative human pose models on the animal pose estimation task?
  2. will the representation ability of a deep model benefit from training on a large-scale dataset with diverse species?
  3. how about the impact of pretraining, e.g., on the ImageNet dataset or human pose estimation dataset, in the context of the large-scale of dataset with diverse species?
  4. how about the intra and inter family generalization ability of a model trained using data from specific species or family?

However, previous datasets for animal pose estimation contain limited number of animal species. Therefore, it is impossible to study these questions using existing datasets as they contains at most 5 species, which is far from enough to get sound conclusion. By contrast, AP-10K has 23 family and 54 species and thus can help researchers to study these questions.

2. Was any cleaning of the data done?

We removed replicated images by using aHash algorithm to detect similar images and manually checking. Images with heavy occlusion and logos were removed manually. The cleaned images were categorized into diifferent species and family.

3. How were the keypoints instructed to be labeled?

Annotators first learned about the physiognomy, body structure and distribution of keypoints of the animals. Then, five images of each species were presented to annotators to annotate keypoints, which were used to assess their annotation quality. Annotators with good annotation quality were further trained on how to deal with the partial absence of the body due to occlusion and were involved in the subsequent annotation process. Annotators were asked to annotate all visible keypoints. For the occluded keypoints, they were asked to annotate keypoints whose location they could estimate based on body plan, pose, and the symmetry property of the body, where the length of occluded limbs or the location of occluded keypoints could be inferred from the visible limbs or keypoints. Other keypoints were left unlabeled.

To guarantee the annotation quality, we have adopted a sequential labeling strategy. Three rounds of cross-check and correction are conducted with both manual check and automatic check (according to specific rules, \eg, keypoints belonging to an instance are in the same bounding box) to reduce the possibility of mislabeling. To begin with, annotators labeled keypoints of each instance and submited a version-1 labels to senior well-trained annotators, and then senior well-trained annotators checked the quality of the version-1 labels and returned an error list to annotators, annotators would fix these errors according to it. Finally, annotators submited a fixed version-2 labels to senior well-trained annotator and they did the last correction to find any potential mislabeled keypoints. After all three rounds of work had been done, a release-version of dataset with high-quality labels was finished.

4. Unity of keypoint and difference of walk type

If we only follow the biology and define the keypoints by the position of the bones, the actual labeled keypoint maybe hard, even invisible for labeling and which look like inharmonious with animal’s movement. Ungulates (or other unguligrade animals) mainly rely on their toes in movement, with their paws, ankles, and knees observable. Compared with these keypoints, the actual hips are less distinctive and difficult to annotate since they are hidden in their body. A similar phenomenon can also be observed in digitigrade animals. On the other hand, plantigrade animals always walk with metatarsals (paws) flat on the ground, with their paws, knees, and hips more distinguishable in movement. Thus, we denote the paws, ankles, and knees for the unguligrade and digitigrade animals, and the paws, knees, and hips for the plantigrade animals. For simplicity, we use 'hip' to denote the knees for unguligrade and digitigrade animals and 'knee' for their ankles. For plantigrade animals, the annotation is the same as the biology definition. Thus, the visual distribution of keypoints is similar across the dataset, as the 'knee' is around the middle of the limbs for all animals.

5. What tasks could the dataset be used for?

AP-10K can be used for the research of animal pose estimation. Besides, it can also be used for specific machine learning topics such as few-shot learning, domain generalization, self-supervised learning. Please see the Discussion part in the paper.

License

The dataset follows CC-BY-4.0 license.

Owner
AP-10K
AP-10K
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

52 Dec 23, 2022
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th

Vrushank Changawala 2 Oct 06, 2021
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Vending_Machine_(Mesin_Penjual_Minuman) Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung Raw Sketch untuk Essay Ringkasan P

QueenLy 1 Nov 08, 2021
PyTorch implementation of ENet

PyTorch-ENet PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torc

David Silva 333 Dec 29, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
[SIGGRAPH Asia 2021] Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN [Paper] [Project Website] [Output resutls] Official Pytorch i

Badour AlBahar 215 Dec 17, 2022
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
Multiple custom object count and detection using YOLOv3-Tiny method

Electronic-Component-YOLOv3 Introduce This project created to detect, count, and recognize multiple custom object using YOLOv3-Tiny method. The target

Derwin Mahardika 2 Nov 14, 2022
We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC).

EMTAUC We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC). In this code, SBGA is considered a ba

7 Nov 24, 2022
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022
Script for getting information in discord

User-info.py Script for getting information in https://discord.com/ Instalação: apt-get update -y apt-get upgrade -y apt-get install git pkg install

Moleey 1 Dec 18, 2021