A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Overview

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge

This is a platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Change Log

  • 2022-05-16: improved engine backend (Linux) with better stability (v1.0)
    • Check out Supported Platforms for download links.
    • Make sure to update to the latest version of the engine if you would like to use depth map or enemy state features.
  • 2022-05-18: updated engine backend for Windows and MacOS (v1.0)

Competition Overview

With a focus on learning intelligent agents in open-world games, this year we are hosting a new contest called Wilderness Scavenger. In this new game, which features a Battle Royale-style 3D open-world gameplay experience and a random PCG-based world generation, participants must learn agents that can perform subtasks common to FPS games, such as navigation, scouting, and skirmishing. To win the competition, agents must have strong perception of complex 3D environments and then learn to exploit various environmental structures (such as terrain, buildings, and plants) by developing flexible strategies to gain advantages over other competitors. Despite the difficulty of this goal, we hope that this new competition can serve as a cornerstone of research in AI-based gaming for open-world games.

Features

  • A light-weight 3D open-world FPS game developed with Unity3D game engine
  • Rendering-off game acceleration for fast training and evaluation
  • Large open world environment providing high freedom of agent behaviors
  • Highly customizable game configuration with random supply distribution and dynamic refresh
  • PCG-based map generation with randomly spawned buildings, plants and obstacles (100 training maps)
  • Interactive replay tool for game record visualization

Basic Structures

We developed this repository to provide a training and evaluation platform for the researchers interested in open-world FPS game AI. For getting started quickly, a typical workspace structure when using this repository can be summarized as follows:

.
├── examples  # providing starter code examples and training baselines
│   ├── envs/...
│   ├── basic.py
│   ├── basic_track1_navigation.py
│   ├── basic_track2_supply_gather.py
│   ├── basic_track3_supply_battle.py
│   ├── baseline_track1_navigation.py
│   ├── baseline_track2_supply_gather.py
│   └── baseline_track3_supply_battle.py
├── inspirai_fps  # the game play API source code
│   ├── lib/...
│   ├── __init__.py
│   ├── gamecore.py
│   ├── raycast_manager.py
│   ├── simple_command_pb2.py
│   ├── simple_command_pb2_grpc.py
│   └── utils.py
└── fps_linux  # the engine backend (Linux)
    ├── UnityPlayer.so
    ├── fps.x86_64
    ├── fps_Data/...
    └── logs/...
  • fps_linux (requires to be manually downloaded and unzipped to your working directory): the (Linux) engine backend extracted from our game development project, containing all the game related assets, binaries and source codes.
  • inspirai_fps: the python gameplay API for agent training and testing, providing the core Game class and other useful tool classes and functions.
  • examples: we provide basic starter codes for each game mode targeting each track of the challenge, and we also give out our implementation of some baseline solutions based on ray.rllib reinforcement learning framework.

Supported Platforms

We support the multiple platforms with different engine backends, including:

Installation (from source)

To use the game play API, you need to first install the package inspirai_fps by following the commands below:

git clone https://github.com/inspirai/wilderness-scavenger
cd wilderness-scavenger
pip install .

We recommend installing this package with python 3.8 (which is our development environment), so you may first create a virtual env using conda and finish installation:

$ conda create -n WildScav python=3.8
$ conda activate WildScav
(WildScav) $ pip install .

Installation (from PyPI)

Note: this may not be maintained in time. We strongly recommend using the installation method above

Alternatively, you can install the package from PyPI directly. But note that this will only install the gameplay API inspirai_fps, not the backend engine. So you still need to manually download the correct engine backend from the Supported Platfroms section.

pip install inspirai-fps

Loading Engine Backend

To successfully run the game, you need to make sure the game engine backend for your platform is downloaded and set the engine_dir parameter of the Game init function correctly. For example, here is a code snippet in the script example/basic.py:

from inspirai_fps import Game, ActionVariable
...
parser.add_argument("--engine-dir", type=str, default="../fps_linux")
...
game = Game(..., engine_dir=args.engine_dir, ...)

Loading Map Data

To get access to some features like realtime depth map computation or randomized player spawning, you need to load the map data and load them into the Game. After this, once you turn on the depth map rendering, the game server will automatically compute a depth map viewing from the player's first person perspective at each time step.

  1. Download map data from Google Drive or Feishu and decompress the downloaded file to your preferred directory (e.g., <WORKDIR>/map_data).
  2. Set map_dir parameter of the Game initializer accordingly
  3. Set the map_id as you like
  4. Turn on the function of depth map computation
  5. Turn on random start location to spawn agents at random places

Read the following code snippet in the script examples/basic.py as an example:

from inspirai_fps import Game, ActionVariable
...
parser.add_argument("--map-id", type=int, default=1)
parser.add_argument("--use-depth-map", action="store_true")
parser.add_argument("--random-start-location", action="store_true")
parser.add_argument("--map-dir", type=str, default="../map_data")
...
game = Game(map_dir=args.map_dir, ...)
game.set_map_id(args.map_id)  # this will load the valid locations of the specified map
...
if args.use_depth_map:
    game.turn_on_depth_map()
    game.set_depth_map_size(380, 220, 200)  # width (pixels), height (pixels), depth_limit (meters)
...
if args.random_start_location:
    for agent_id in range(args.num_agents):
        game.random_start_location(agent_id, indoor=False)  # this will randomly spawn the player at a valid outdoor location, or indoor location if indoor is True
...
game.new_episode()  # start a new episode, this will load the mesh of the specified map

Gameplay Visualization

We have also developed a replay visualization tool based on the Unity3D game engine. It is similar to the spectator mode common in multiplayer FPS games, which allows users to interactively follow the gameplay. Users can view an agent's action from different perspectives and also switch between multiple agents or different viewing modes (e.g., first person, third person, free) to see the entire game in a more immersive way. Participants can download the tool for their specific platforms here:

To use this tool, follow the instruction below:

  • Decompress the downloaded file to anywhere you prefer.
  • Turn on recording function with game.turn_on_record(). One record file will be saved at the end of each episode.

Find the replay files under the engine directory according to your platform:

  • Linux: <engine_dir>/fps_Data/StreamingAssets/Replay
  • Windows: <engine_dir>\FPSGameUnity_Data\StreamingAssets\Replay
  • MacOS: <engine_dir>/Contents/Resources/Data/StreamingAssets/Replay

Copy replay files you want to the replay tool directory according to your platform and start the replay tool.

For Windows users:

  • Copy the replay file (e.g. xxx.bin) into <replayer_dir>/FPSGameUnity_Data/StreamingAssets/Replay
  • Run FPSGameUnity.exe to start the application.

For MacOS users:

  • Copy the replay file (e.g. xxx.bin) into <replayer_dir>/Contents/Resources/Data/StreamingAssets/Replay
  • Run fps.app to start the application.

In the replay tool, you can:

  • Select the record you want to watch from the drop-down menu and click PLAY to start playing the record.
  • During the replay, users can make the following operations
    • Press Tab: pause or resume
    • Press E: switch observation mode (between first person, third person, free)
    • Press Q: switch between multiple agents
    • Press ECS: stop replay and return to the main menu
Highly comparative time-series analysis

〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu

Ben Fulcher 569 Dec 21, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
Pytorch ImageNet1k Loader with Bounding Boxes.

ImageNet 1K Bounding Boxes For some experiments, you might wanna pass only the background of imagenet images vs passing only the foreground. Here, I'v

Amin Ghiasi 11 Oct 15, 2022
pytorch implementation of ABC : Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning

ABC:Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning, NeurIPS 2021 pytorch implementation of ABC : Auxiliary Balanced Class

Hyuck Lee 25 Dec 22, 2022
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

Autonomio 1.6k Dec 15, 2022
Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

MosaicOS Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation. Introduction M

Cheng Zhang 27 Oct 12, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Pytorch implementation of CVPR2020 paper “VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation”

VectorNet Re-implementation This is the unofficial pytorch implementation of CVPR2020 paper "VectorNet: Encoding HD Maps and Agent Dynamics from Vecto

120 Jan 06, 2023
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake

Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p

Flask Extensions 611 Dec 05, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021
A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashl

89 Dec 10, 2022
Boundary-preserving Mask R-CNN (ECCV 2020)

BMaskR-CNN This code is developed on Detectron2 Boundary-preserving Mask R-CNN ECCV 2020 Tianheng Cheng, Xinggang Wang, Lichao Huang, Wenyu Liu Video

Hust Visual Learning Team 178 Nov 28, 2022
An educational AI robot based on NVIDIA Jetson Nano.

JetBot Looking for a quick way to get started with JetBot? Many third party kits are now available! JetBot is an open-source robot based on NVIDIA Jet

NVIDIA AI IOT 2.6k Dec 29, 2022