Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Related tags

Deep LearningHiTS
Overview

Hierarchical reinforcement learning with Timed Subgoals (HiTS)

This repository contains code for reproducing experiments from our paper "Hierarchical reinforcement learning with Timed Subgoals". The implementation of the Hierarchical reinforcement learning with Timed Subgoals (HiTS) algorithm can be found in the Graph-RL repository.

HiTS enables sample-efficient learning in sparse-reward, long-horizong tasks. In particular, it extends subgoal-based hierarchical reinforcement learning to environments with dynamic elements which are, most of the time, beyond the control of the agent. Due to the use of timed subgoals and hindsight action relabeling the higher level sees transitions that are consistent with a stationary effective environment. As a result both levels in the hierarchy can learn concurrently and efficiently.

The three benchmark tasks in dynamic environments from the paper are contained in the dynamic-rl-benchmarks repository. If you are interested in applying HiTS to a different task, then this demo in the Graph-RL repository is the best place to start.

Installation

We recommend using a virtual environment with python3.7 or higher. Make sure pip is up to date. In the root directory of the repository execute:

pip install -r requirements.txt

Usage

To render episodes with one of the pretrained policies execute in the root directory:

python -m scripts.run.render --algo hits --env Platforms

Available algorithms:

  • hits
  • hac
  • sac

Available environments:

  • AntFourRooms
  • Drawbridge
  • Pendulum
  • Platforms
  • Tennis2D
  • UR5Reacher

A policy can be be trained from scratch by running:

python -m scripts.run.train --algo hits --env Platforms

To render episodes with a newly trained policy use:

python -m scripts.run.render --algo hits --env Platforms --newly_trained

To render an episode with the stochastic policy used during training:

python -m scripts.run.render --algo hits --env Platforms --newly_trained --stochastic

Hyperparameters and seeds can be found in the graph_params.json files in the data directory. The key level_params_list contains a list of the hyperparameters of all levels, starting with the lowest level.

How to cite

Please use the following BibTex entry.

@article{gurtler2021hierarchical,
  title={Hierarchical Reinforcement Learning with Timed Subgoals},
  author={G{\"u}rtler, Nico and B{\"u}chler, Dieter and Martius, Georg},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
Owner
Autonomous Learning Group
Autonomous Learning Group
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kürzinger 217 Jan 04, 2023
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

Launch Platform 16 Oct 11, 2022
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD

Microsoft 36 Nov 28, 2022
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
Pytorch and Torch testing code of CartoonGAN

CartoonGAN-Test-Pytorch-Torch Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors,

Yijun Li 642 Dec 27, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
An open source implementation of CLIP.

OpenCLIP Welcome to an open source implementation of OpenAI's CLIP (Contrastive Language-Image Pre-training). The goal of this repository is to enable

2.7k Dec 31, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023