A Light CNN for Deep Face Representation with Noisy Labels

Overview

A Light CNN for Deep Face Representation with Noisy Labels

Citation

If you use our models, please cite the following paper:

@article{wulight,
  title={A Light CNN for Deep Face Representation with Noisy Labels},
  author={Wu, Xiang and He, Ran and Sun, Zhenan and Tan, Tieniu}
  journal={arXiv preprint arXiv:1511.02683},
  year={2015}
}
@article{wu2015lightened,
  title={A Lightened CNN for Deep Face Representation},
  author={Wu, Xiang and He, Ran and Sun, Zhenan},
  journal={arXiv preprint arXiv:1511.02683},
  year={2015}
}
@article{wu2015learning,
  title={Learning Robust Deep Face Representation},
  author={Wu, Xiang},
  journal={arXiv preprint arXiv:1507.04844},
  year={2015}
}

Updates

  • Dec 16, 2016
  • Nov 08, 2016
    • The prototxt and model C based on caffe-rc3 is updated. The accuracy on LFW achieves 98.80% and the [email protected]=0 obtains 94.97%.
    • The performance of set 1 on MegaFace achieves 65.532% for rank-1 accuracy and 75.854% for [email protected]=10^-6.
  • Nov 26, 2015
    • The prototxt and model B is updated and the accuracy on LFW achieves 98.13% for a single net without training on LFW.
  • Aug 13, 2015
    • Evaluation of LFW for identification protocols is published.
  • Jun 11, 2015
    • The prototxt and model A is released. The accuracy on LFW achieves 97.77%.

Overview

The Deep Face Representation Experiment is based on Convolution Neural Network to learn a robust feature for face verification task. The popular deep learning framework caffe is used for training on face datasets such as CASIA-WebFace, VGG-Face and MS-Celeb-1M. And the feature extraction is realized by python code caffe_ftr.py.

Structure

  • Code
    • data pre-processing and evaluation code
  • Model
    • caffemodel.
      • The model A and B is trained on CASIA-WebFace by caffe-rc.
      • The model C is trained on MS-Celeb-1M by caffe-rc3.
  • Proto
    • Lightened CNN implementations by caffe
  • Results
    • LFW features

Description

Data Pre-processing

  1. Download face dataset such as CASIA-WebFace, VGG-Face and MS-Celeb-1M.
  2. All face images are converted to gray-scale images and normalized to 144x144 according to landmarks.
  3. According to the 5 facial points, we not only rotate two eye points horizontally but also set the distance between the midpoint of eyes and the midpoint of mouth(ec_mc_y), and the y axis of midpoint of eyes(ec_y) .
Dataset size ec_mc_y ec_y
Training set 144x144 48 48
Testing set 128x128 48 40

Training

  1. The model is trained by open source deep learning framework caffe.
  2. The network configuration is showed in "proto" file and the trained model is showed in "model" file.

Evaluation

  1. The model is evaluated on LFW which is a popular data set for face verification task.
  2. The extracted features and lfw testing pairs are located in "results" file.
  3. To evaluate the model, the matlab code or other ROC evaluation code can be used.
  4. The model is also evaluated on MegaFace. The dataset and evaluation code can be downloaded from http://megaface.cs.washington.edu/

Results

The single convolution net testing is evaluated on unsupervised setting only computing cosine similarity for lfw pairs.

Model 100% - EER [email protected]=1% [email protected]=0.1% [email protected]=0 Rank-1 [email protected]=1%
A 97.77% 94.80% 84.37% 43.17% 84.79% 63.09%
B 98.13% 96.73% 87.13% 64.33% 89.21% 69.46%
C 98.80% 98.60% 96.77% 94.97% 93.80% 84.40%

The details are published as a technical report on arXiv.

The released models are only allowed for non-commercial use.

Owner
Alfred Xiang Wu
魔炮厨 | 夏娜厨 | 久远厨 | 珂朵莉厨 | PSN: wkira_vivio
Alfred Xiang Wu
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
Simple and understandable swin-transformer OCR project

swin-transformer-ocr ocr with swin-transformer Overview Simple and understandable swin-transformer OCR project. The model in this repository heavily r

Ha YongWook 67 Dec 31, 2022
SMPL-X: A new joint 3D model of the human body, face and hands together

SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I

Vassilis Choutas 1k Jan 09, 2023
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the ge

Phil Wang 5k Jan 04, 2023
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Targeted Trojan-Horse Attacks on Language-based Image Retrieval Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Re

fine 7 Aug 23, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"

BEGAN in Tensorflow Tensorflow implementation of BEGAN: Boundary Equilibrium Generative Adversarial Networks. Requirements Python 2.7 or 3.x Pillow tq

Taehoon Kim 922 Dec 21, 2022
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

keven 198 Dec 20, 2022
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Nikita 12 Dec 14, 2022
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
A disassembler for the RP2040 Programmable I/O State-machine!

piodisasm A disassembler for the RP2040 Programmable I/O State-machine! Usage Just run piodisasm.py on a file that contains the PIO code as hex! (Such

Ghidra Ninja 29 Dec 06, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
TensorFlow 2 implementation of the Yahoo Open-NSFW model

TensorFlow 2 implementation of the Yahoo Open-NSFW model

Bosco Yung 101 Jan 01, 2023
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023