Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Overview

Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

This paper has been accepted by Conference on Robot Learning 2021.

By Ziyue Feng, Longlong Jing, Peng Yin, Yingli Tian, and Bing Li.

Arxiv: Link YouTube: link Slides: Link

image

image

Abstract

Self-supervised monocular depth prediction provides a cost-effective solution to obtain the 3D location of each pixel. However, the existing approaches usually lead to unsatisfactory accuracy, which is critical for autonomous robots. In this paper, we propose a novel two-stage network to advance the self-supervised monocular dense depth learning by leveraging low-cost sparse (e.g. 4-beam) LiDAR. Unlike the existing methods that use sparse LiDAR mainly in a manner of time-consuming iterative post-processing, our model fuses monocular image features and sparse LiDAR features to predict initial depth maps. Then, an efficient feed-forward refine network is further designed to correct the errors in these initial depth maps in pseudo-3D space with real-time performance. Extensive experiments show that our proposed model significantly outperforms all the state-of-the-art self-supervised methods, as well as the sparse-LiDAR-based methods on both self-supervised monocular depth prediction and completion tasks. With the accurate dense depth prediction, our model outperforms the state-of-the-art sparse-LiDAR-based method (Pseudo-LiDAR++) by more than 68% for the downstream task monocular 3D object detection on the KITTI Leaderboard.

⚙️ Setup

You can install the dependencies with:

conda create -n depth python=3.6.6
conda activate depth
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge
pip install tensorboardX==1.4
conda install opencv=3.3.1   # just needed for evaluation
pip install open3d
pip install wandb
pip install scikit-image

We ran our experiments with PyTorch 1.8.0, CUDA 11.1, Python 3.6.6 and Ubuntu 18.04.

💾 KITTI Data Prepare

Download Data

You need to first download the KITTI RAW dataset, put in the kitti_data folder.

Our default settings expect that you have converted the png images to jpeg with this command, which also deletes the raw KITTI .png files:

find kitti_data/ -name '*.png' | parallel 'convert -quality 92 -sampling-factor 2x2,1x1,1x1 {.}.png {.}.jpg && rm {}'

or you can skip this conversion step and train from raw png files by adding the flag --png when training, at the expense of slower load times.

Preprocess Data

# bash prepare_1beam_data_for_prediction.sh
# bash prepare_2beam_data_for_prediction.sh
# bash prepare_3beam_data_for_prediction.sh
bash prepare_4beam_data_for_prediction.sh
# bash prepare_r100.sh # random sample 100 LiDAR points
# bash prepare_r200.sh # random sample 200 LiDAR points

Training

By default models and tensorboard event files are saved to log/mdp/.

Depth Prediction:

python trainer.py
python inf_depth_map.py --need_path
python inf_gdc.py
python refiner.py

Depth Completion:

Please first download the KITTI Completion dataset.

python completor.py

Monocular 3D Object Detection:

Please first download the KITTI 3D Detection dataset.

python export_detection.py

Then you can train the PatchNet based on the exported depth maps.

📊 KITTI evaluation

python evaluate_depth.py
python evaluate_completion.py

Citation

@article{feng2021advancing,
  title={Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR},
  author={Feng, Ziyue and Jing, Longlong and Yin, Peng and Tian, Yingli and Li, Bing},
  journal={arXiv preprint arXiv:2109.09628},
  year={2021}
}

Reference

Our code is based on the Monodepth2: https://github.com/nianticlabs/monodepth2

Owner
Ziyue Feng
Computer Vision, Autonomous Driving, Machine Learning, Deep Learning
Ziyue Feng
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
SANet: A Slice-Aware Network for Pulmonary Nodule Detection

SANet: A Slice-Aware Network for Pulmonary Nodule Detection This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021. This code and

Jie Mei 39 Dec 17, 2022
Deep High-Resolution Representation Learning for Human Pose Estimation

Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019) News If you are interested in internship or research pos

HRNet 167 Dec 27, 2022
Finite Element Analysis

FElupe - Finite Element Analysis FElupe is a Python 3.6+ finite element analysis package focussing on the formulation and numerical solution of nonlin

Andreas D. 20 Jan 09, 2023
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022
An end-to-end project on customer segmentation

End-to-end Customer Segmentation Project Note: This project is in progress. Tools Used in This Project Prefect: Orchestrate workflows hydra: Manage co

Ocelot Consulting 8 Oct 06, 2022
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

Wenhao Wu 114 Nov 27, 2022
Bayesian Meta-Learning Through Variational Gaussian Processes

vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces

Vivek Myers 2 Nov 17, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles

Workspace Permissions Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles. Features Configure foreach workspace

Patrick.St. 18 Sep 26, 2022
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

Brad 24 Nov 11, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

Phil Wang 1.4k Dec 29, 2022