Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Overview

Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

This paper has been accepted by Conference on Robot Learning 2021.

By Ziyue Feng, Longlong Jing, Peng Yin, Yingli Tian, and Bing Li.

Arxiv: Link YouTube: link Slides: Link

image

image

Abstract

Self-supervised monocular depth prediction provides a cost-effective solution to obtain the 3D location of each pixel. However, the existing approaches usually lead to unsatisfactory accuracy, which is critical for autonomous robots. In this paper, we propose a novel two-stage network to advance the self-supervised monocular dense depth learning by leveraging low-cost sparse (e.g. 4-beam) LiDAR. Unlike the existing methods that use sparse LiDAR mainly in a manner of time-consuming iterative post-processing, our model fuses monocular image features and sparse LiDAR features to predict initial depth maps. Then, an efficient feed-forward refine network is further designed to correct the errors in these initial depth maps in pseudo-3D space with real-time performance. Extensive experiments show that our proposed model significantly outperforms all the state-of-the-art self-supervised methods, as well as the sparse-LiDAR-based methods on both self-supervised monocular depth prediction and completion tasks. With the accurate dense depth prediction, our model outperforms the state-of-the-art sparse-LiDAR-based method (Pseudo-LiDAR++) by more than 68% for the downstream task monocular 3D object detection on the KITTI Leaderboard.

โš™๏ธ Setup

You can install the dependencies with:

conda create -n depth python=3.6.6
conda activate depth
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge
pip install tensorboardX==1.4
conda install opencv=3.3.1   # just needed for evaluation
pip install open3d
pip install wandb
pip install scikit-image

We ran our experiments with PyTorch 1.8.0, CUDA 11.1, Python 3.6.6 and Ubuntu 18.04.

๐Ÿ’พ KITTI Data Prepare

Download Data

You need to first download the KITTI RAW dataset, put in the kitti_data folder.

Our default settings expect that you have converted the png images to jpeg with this command, which also deletes the raw KITTI .png files:

find kitti_data/ -name '*.png' | parallel 'convert -quality 92 -sampling-factor 2x2,1x1,1x1 {.}.png {.}.jpg && rm {}'

or you can skip this conversion step and train from raw png files by adding the flag --png when training, at the expense of slower load times.

Preprocess Data

# bash prepare_1beam_data_for_prediction.sh
# bash prepare_2beam_data_for_prediction.sh
# bash prepare_3beam_data_for_prediction.sh
bash prepare_4beam_data_for_prediction.sh
# bash prepare_r100.sh # random sample 100 LiDAR points
# bash prepare_r200.sh # random sample 200 LiDAR points

โณ Training

By default models and tensorboard event files are saved to log/mdp/.

Depth Prediction:

python trainer.py
python inf_depth_map.py --need_path
python inf_gdc.py
python refiner.py

Depth Completion:

Please first download the KITTI Completion dataset.

python completor.py

Monocular 3D Object Detection:

Please first download the KITTI 3D Detection dataset.

python export_detection.py

Then you can train the PatchNet based on the exported depth maps.

๐Ÿ“Š KITTI evaluation

python evaluate_depth.py
python evaluate_completion.py

Citation

@article{feng2021advancing,
  title={Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR},
  author={Feng, Ziyue and Jing, Longlong and Yin, Peng and Tian, Yingli and Li, Bing},
  journal={arXiv preprint arXiv:2109.09628},
  year={2021}
}

Reference

Our code is based on the Monodepth2: https://github.com/nianticlabs/monodepth2

Owner
Ziyue Feng
Computer Vision, Autonomous Driving, Machine Learning, Deep Learning
Ziyue Feng
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.

Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py

Anton Sinitsin 32 Nov 29, 2022
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
PyTorch Implementation of Realtime Multi-Person Pose Estimation project.

PyTorch Realtime Multi-Person Pose Estimation This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here Realtime_Multi-P

Dave Fang 157 Nov 12, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Vowpal Wabbit 8.1k Jan 06, 2023
DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

OpenDILab 185 Dec 29, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ โ”œโ”€โ”€ README.md โ”œโ”€โ”€ data โ”‚ย ย  โ”œโ”€โ”€ README.md โ”‚ย ย  โ”œโ”€โ”€ data ๆ•ฐๆฎ้›† โ”‚ย ย  โ”‚ย ย  โ”œโ”€

1 Dec 17, 2021
Implementation of Basic Machine Learning Algorithms on small datasets using Scikit Learn.

Basic Machine Learning Algorithms All the basic Machine Learning Algorithms are implemented in Python using libraries Acknowledgements Machine Learnin

Piyal Banik 47 Oct 16, 2022
The Face Mask recognition system uses AI technology to detect the person with or without a mask.

Face Mask Detection Face Mask Detection system built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Rohan Kasabe 4 Apr 05, 2022
ํ†ต์ผ๋œ DataScience ํด๋” ๊ตฌ์กฐ ์ œ๊ณต ๋ฐ ๊ฐ€์ƒํ™˜๊ฒฝ ์ž‘์—…์˜ ๋ถ€๋‹ด๊ฐ ํ•ด์†Œ

Lucas coded by linux shell ๋ชฉ์ฐจ Mac๋ฒ„์ „ CookieCutter (autoenv) 1.How to Install autoenv 2.ํด๋” ์ง„์ž… ์‹œ, activate ๊ตฌํ˜„ํ•˜๊ธฐ 3.ํด๋” ํƒˆ์ถœ ์‹œ, deactivate ๊ตฌํ˜„ํ•˜๊ธฐ 4.Alias ์„ค์ •ํ•˜๊ธฐ 5

ello 3 Feb 21, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
VM3000 Microphones

VM3000-Microphones This project was completed by Ricky Leman under the supervision of Dr Ben Travaglione and Professor Melinda Hodkiewicz as part of t

UWA System Health Lab 0 Jun 04, 2021
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Submission to Twitter's algorithmic bias bounty challenge

Twitter Ethics Challenge: Pixel Perfect Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic). Abstract We build

Travis Hoppe 4 Aug 19, 2022