Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Related tags

Deep LearningPGCN
Overview

Graph Convolutional Networks for Temporal Action Localization

This repo holds the codes and models for the PGCN framework presented on ICCV 2019

Graph Convolutional Networks for Temporal Action Localization Runhao Zeng*, Wenbing Huang*, Mingkui Tan, Yu Rong, Peilin Zhao, Junzhou Huang, Chuang Gan, ICCV 2019, Seoul, Korea.

[Paper]

Updates

20/12/2019 We have uploaded the RGB features, trained models and evaluation results! We found that increasing the number of proposals to 800 in the testing further boosts the performance on THUMOS14. We have also updated the proposal list.

04/07/2020 We have uploaded the I3D features on Anet, the training configurations files in data/dataset_cfg.yaml and the proposal lists for Anet.

Contents



Usage Guide

Prerequisites

[back to top]

The training and testing in PGCN is reimplemented in PyTorch for the ease of use.

Other minor Python modules can be installed by running

pip install -r requirements.txt

Code and Data Preparation

[back to top]

Get the code

Clone this repo with git, please remember to use --recursive

git clone --recursive https://github.com/Alvin-Zeng/PGCN

Download Datasets

We support experimenting with two publicly available datasets for temporal action detection: THUMOS14 & ActivityNet v1.3. Here are some steps to download these two datasets.

  • THUMOS14: We need the validation videos for training and testing videos for testing. You can download them from the THUMOS14 challenge website.
  • ActivityNet v1.3: this dataset is provided in the form of YouTube URL list. You can use the official ActivityNet downloader to download videos from the YouTube.

Download Features

Here, we provide the I3D features (RGB+Flow) for training and testing.

THUMOS14: You can download it from Google Cloud or Baidu Cloud.

Anet: You can download the I3D Flow features from Baidu Cloud (password: jbsa) and the I3D RGB features from Google Cloud (Note: set the interval to 16 in ops/I3D_Pooling_Anet.py when training with RGB features)

Download Proposal Lists (ActivityNet)

Here, we provide the proposal lists for ActivityNet 1.3. You can download them from Google Cloud

Training PGCN

[back to top]

Plesse first set the path of features in data/dataset_cfg.yaml

train_ft_path: $PATH_OF_TRAINING_FEATURES
test_ft_path: $PATH_OF_TESTING_FEATURES

Then, you can use the following commands to train PGCN

python pgcn_train.py thumos14 --snapshot_pre $PATH_TO_SAVE_MODEL

After training, there will be a checkpoint file whose name contains the information about dataset and the number of epoch. This checkpoint file contains the trained model weights and can be used for testing.

Testing Trained Models

[back to top]

You can obtain the detection scores by running

sh test.sh TRAINING_CHECKPOINT

Here, TRAINING_CHECKPOINT denotes for the trained model. This script will report the detection performance in terms of mean average precision at different IoU thresholds.

The trained models and evaluation results are put in the "results" folder.

You can obtain the two-stream results on THUMOS14 by running

sh test_two_stream.sh

THUMOS14

[email protected] (%) RGB Flow RGB+Flow
P-GCN (I3D) 37.23 47.42 49.07 (49.64)

#####Here, 49.64% is obtained by setting the combination weights to Flow:RGB=1.2:1 and nms threshold to 0.32

Other Info

[back to top]

Citation

Please cite the following paper if you feel PGCN useful to your research

@inproceedings{PGCN2019ICCV,
  author    = {Runhao Zeng and
               Wenbing Huang and
               Mingkui Tan and
               Yu Rong and
               Peilin Zhao and
               Junzhou Huang and
               Chuang Gan},
  title     = {Graph Convolutional Networks for Temporal Action Localization},
  booktitle   = {ICCV},
  year      = {2019},
}

Contact

For any question, please file an issue or contact

Runhao Zeng: [email protected]
Owner
Runhao Zeng
Runhao Zeng
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 08, 2023
This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python

Hand Cricket Table of Content Overview Installation Game rules Project Details Future scope Overview This is a computer vision based implementation of

Abhinav R Nayak 6 Jan 12, 2022
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
KE-Dialogue: Injecting knowledge graph into a fully end-to-end dialogue system.

Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems This is the implementation of the paper: Learning Knowledge Bases with Par

CAiRE 42 Nov 10, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Ibai Gorordo 2 Oct 04, 2021
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
A repository for the paper "Improved Adversarial Systems for 3D Object Generation and Reconstruction".

Improved Adversarial Systems for 3D Object Generation and Reconstruction: This is a repository for the paper "Improved Adversarial Systems for 3D Obje

Edward Smith 188 Dec 25, 2022
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

ycj_project 1 Jan 18, 2022
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022
Get the partition that a file belongs and the percentage of space that consumes

tinos_eisai_sy Get the partition that a file belongs and the percentage of space that consumes (works only with OSes that use the df command) tinos_ei

Konstantinos Patronas 6 Jan 24, 2022
Fuzzing JavaScript Engines with Aspect-preserving Mutation

DIE Repository for "Fuzzing JavaScript Engines with Aspect-preserving Mutation" (in S&P'20). You can check the paper for technical details. Environmen

gts3.org (<a href=[email protected])"> 190 Dec 11, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022