Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Overview

Density-aware Chamfer Distance

This repository contains the official PyTorch implementation of our paper:

Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion, NeurIPS 2021

Tong Wu, Liang Pan, Junzhe Zhang, Tai Wang, Ziwei Liu, Dahua Lin

avatar

We present a new point cloud similarity measure named Density-aware Chamfer Distance (DCD). It is derived from CD and benefits from several desirable properties: 1) it can detect disparity of density distributions and is thus a more intensive measure of similarity compared to CD; 2) it is stricter with detailed structures and significantly more computationally efficient than EMD; 3) the bounded value range encourages a more stable and reasonable evaluation over the whole test set. DCD can be used as both an evaluation metric and the training loss. We mainly validate its performance on point cloud completion in our paper.

This repository includes:

  • Implementation of Density-aware Chamfer Distance (DCD).
  • Implementation of our method for this task and the pre-trained model.

Installation

Requirements

  • PyTorch 1.2.0
  • Open3D 0.9.0
  • Other dependencies are listed in requirements.txt.

Install

Install PyTorch 1.2.0 first, and then get the other requirements by running the following command:

bash setup.sh

Dataset

We use the MVP Dataset. Please download the train set and test set and then modify the data path in data/mvp_new.py to the your own data location. Please refer to their codebase for further instructions.

Usage

Density-aware Chamfer Distance

The function for DCD calculation is defined in def calc_dcd() in utils/model_utils.py.

Users of higher PyTorch versions may try def calc_dcd() in utils_v2/model_utils.py, which has been tested on PyTorch 1.6.0 .

Model training and evaluation

  • To train a model: run python train.py ./cfgs/*.yaml, for example:
python train.py ./cfgs/vrc_plus.yaml
  • To test a model: run python train.py ./cfgs/*.yaml --test_only, for example:
python train.py ./cfgs/vrc_plus_eval.yaml --test_only
  • Config for each algorithm can be found in cfgs/.
  • run_train.sh and run_test.sh are provided for SLURM users.

We provide the following config files:

  • pcn.yaml: PCN trained with CD loss.
  • vrc.yaml: VRCNet trained with CD loss.
  • pcn_dcd.yaml: PCN trained with DCD loss.
  • vrc_dcd.yaml: VRCNet trained with DCD loss.
  • vrc_plus.yaml: training with our method.
  • vrc_plus_eval.yaml: evaluation of our method with guided down-sampling.

Attention: We empirically find that using DP or DDP for training would slightly hurt the performance. So training on multiple cards is not well supported currently.

Pre-trained models

We provide the pre-trained model that reproduce the results in our paper. Download and extract it to the ./log/pretrained/ directory, and then evaluate it with cfgs/vrc_plus_eval.yaml. The setting prob_sample: True turns on the guided down-sampling. We also provide the model for VRCNet trained with DCD loss here.

Citation

If you find our code or paper useful, please cite our paper:

@inproceedings{wu2021densityaware,
  title={Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion},
  author={Tong Wu, Liang Pan, Junzhe Zhang, Tai WANG, Ziwei Liu, Dahua Lin},
  booktitle={In Advances in Neural Information Processing Systems (NeurIPS), 2021},
  year={2021}
}

Acknowledgement

The code is based on the VRCNet implementation. We include the following PyTorch 3rd-party libraries: ChamferDistancePytorch, emd, expansion_penalty, MDS, and Pointnet2.PyTorch. Thanks for these great projects.

Contact

Please contact @wutong16 for questions, comments and reporting bugs.

Owner
Tong WU
Tong WU
We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will make a program to Crack Any Password Using Python. Show some ❤️ by starring this repository!

Crack Any Password Using Python We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will

Ananya Chatterjee 11 Dec 03, 2022
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022
License Plate Detection Application

LicensePlate_Project 🚗 🚙 [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. 데이터 수집 및 라벨링 차량 번호판 이미지를 직접 수집하여 각 이미지에 대해 '번호판

4 Oct 10, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
PyTorch implementation of UNet++ (Nested U-Net).

PyTorch implementation of UNet++ (Nested U-Net) This repository contains code for a image segmentation model based on UNet++: A Nested U-Net Architect

4ui_iurz1 642 Jan 04, 2023
This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C

Zhuoqian Yang 330 Dec 11, 2022
TensorFlow 101: Introduction to Deep Learning for Python Within TensorFlow

TensorFlow 101: Introduction to Deep Learning I have worked all my life in Machine Learning, and I've never seen one algorithm knock over its benchmar

Sefik Ilkin Serengil 896 Jan 04, 2023
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph

Keren Ye 35 Nov 20, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
Automatic caption evaluation metric based on typicality analysis.

SeMantic and linguistic UndeRstanding Fusion (SMURF) Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRs

Joshua Feinglass 6 Jan 09, 2022
unet for image segmentation

Implementation of deep learning framework -- Unet, using Keras The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Seg

zhixuhao 4.1k Dec 31, 2022
Wenet STT Python

Wenet STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using WeNet models for sp

David Zurow 33 Feb 21, 2022
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022