[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Overview

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight)

Demo | Paper

[NEW!] Time to play with our interactive web demo!

Numerous task-specific variants of conditional generative adversarial networks have been developed for image completion. Yet, a serious limitation remains that all existing algorithms tend to fail when handling large-scale missing regions. To overcome this challenge, we propose a generic new approach that bridges the gap between image-conditional and recent modulated unconditional generative architectures via co-modulation of both conditional and stochastic style representations. Also, due to the lack of good quantitative metrics for image completion, we propose the new Paired/Unpaired Inception Discriminative Score (P-IDS/U-IDS), which robustly measures the perceptual fidelity of inpainted images compared to real images via linear separability in a feature space. Experiments demonstrate superior performance in terms of both quality and diversity over state-of-the-art methods in free-form image completion and easy generalization to image-to-image translation.

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks
Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao Liang, Eric I Chang, Yan Xu
Tsinghua University and Microsoft Research
arXiv | OpenReview

Overview

This repo is implemented upon and has the same dependencies as the official StyleGAN2 repo. We also provide a Dockerfile for Docker users. This repo currently supports:

  • Large scale image completion experiments on FFHQ and Places2
  • Image-to-image translation experiments on edges to photos and COCO-Stuff
  • Evaluation code of Paired/Unpaired Inception Discriminative Score (P-IDS/U-IDS)

Datasets

  • FFHQ dataset (in TFRecords format) can be downloaded following the StyleGAN2 repo.
  • Places2 dataset can be downloaded in this website (Places365-Challenge 2016 high-resolution images, training set and validation set). The raw images should be converted into TFRecords using dataset_tools/create_places2.py.

Training

The following script is for training on FFHQ. It will splits 10k images for validation. We recommend using 8 NVIDIA Tesla V100 GPUs for training. Training at 512x512 resolution takes about 1 week.

python run_training.py --data-dir=DATA_DIR --dataset=DATASET --metrics=ids10k --num-gpus=8

The following script is for training on Places2, which has a validation set of 36500 images:

python run_training.py --data-dir=DATA_DIR --dataset=DATASET --metrics=ids36k5 --total-kimg 50000 --num-gpus=8

Evaluation

The following script is for evaluation:

python run_metrics.py --data-dir=DATA_DIR --dataset=DATASET --network=CHECKPOINT_FILE(S) --metrics=METRIC(S) --num-gpus=1

Commonly used metrics are ids10k and ids36k5 (for FFHQ and Places2 respectively), which will compute P-IDS and U-IDS together with FID. By default, masks are generated randomly for evaluation, or you may append the metric name with -h0 ([0.0, 0.2]) to -h4 ([0.8, 1.0]) to specify the range of masked ratio.

Our pre-trained models are available on Google Drive. Below lists our provided pre-trained models:

Model name & URL Description
co-mod-gan-ffhq-9-025000.pkl Large scale image completion on FFHQ (512x512)
co-mod-gan-ffhq-10-025000.pkl Large scale image completion on FFHQ (1024x1024)
co-mod-gan-places2-050000.pkl Large scale image completion on Places2 (512x512)
co-mod-gan-coco-stuff-025000.pkl Image-to-image translation on COCO-Stuff (labels to photos) (512x512)
co-mod-gan-edges2shoes-025000.pkl Image-to-image translation on edges2shoes (256x256)
co-mod-gan-edges2handbags-025000.pkl Image-to-image translation on edges2handbags (256x256)

Use the following script to run the interactive demo locally:

python run_demo.py -d DATA_DIR/DATASET -c CHECKPOINT_FILE(S)

Citation

If you find this code helpful, please cite our paper:

@inproceedings{zhao2021comodgan,
  title={Large Scale Image Completion via Co-Modulated Generative Adversarial Networks},
  author={Zhao, Shengyu and Cui, Jonathan and Sheng, Yilun and Dong, Yue and Liang, Xiao and Chang, Eric I and Xu, Yan},
  booktitle={International Conference on Learning Representations (ICLR)},
  year={2021}
}
Owner
Shengyu Zhao
Undergraduate at IIIS, Tsinghua University. Working with MIT and Microsoft Research.
Shengyu Zhao
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation โš ๏ธ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Intermediate Domain Module (IDM) This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-I

Yongxing Dai 87 Nov 22, 2022
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation This repo is official implementation CVPR 2021 paper: Equalization

Jingru Tan 129 Dec 16, 2022
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].

Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I

Christoph Reich 100 Dec 01, 2022
Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit

streamlit-manim Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit Installation I had to install pango with sudo apt-get

Adrien Treuille 6 Aug 03, 2022
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ ๐Ÿš€ BasicSR] [Real-ESRGAN] โœจ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
Implement object segmentation on images using HOG algorithm proposed in CVPR 2005

HOG Algorithm Implementation Description HOG (Histograms of Oriented Gradients) Algorithm is an algorithm aiming to realize object segmentation (edge

Leo Hsieh 2 Mar 12, 2022
Experiments with the Robust Binary Interval Search (RBIS) algorithm, a Query-Based prediction algorithm for the Online Search problem.

OnlineSearchRBIS Online Search with Best-Price and Query-Based Predictions This is the implementation of the Robust Binary Interval Search (RBIS) algo

S. K. 1 Apr 16, 2022
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .โ–„โ–„ ยท โ–„ยท โ–„โ–Œ โ– โ–„ โ–„โ–„โ–„ยท โ– โ–„ โ–โ–ˆ โ–€. โ–โ–ˆโ–ชโ–ˆโ–ˆโ–Œโ€ขโ–ˆโ–Œโ–โ–ˆโ–โ–ˆ โ–„โ–ˆโ–ช โ€ขโ–ˆโ–Œโ–โ–ˆ โ–„โ–€โ–€โ–€โ–ˆโ–„โ–โ–ˆโ–Œโ–โ–ˆโ–ชโ–โ–ˆโ–โ–โ–Œ โ–ˆโ–ˆโ–€

SynPon 53 Dec 12, 2022
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022