Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Overview

Sartorius - Cell Instance Segmentation

https://www.kaggle.com/c/sartorius-cell-instance-segmentation

Environment setup

Build docker image

bash .dev_scripts/build.sh

Set env variables

export DATA_DIR="/path/to/data"
export CODE_DIR="/path/to/this/repo"

Start a docker container

bash .dev_scripts/start.sh all

Data preparation

  1. Download competition data from Kaggle
  2. Download LIVECell dataset from https://github.com/sartorius-research/LIVECell (we didn't use the data provided by Kaggle)
  3. Unzip the files as follows
├── LIVECell_dataset_2021
│   ├── images
│   ├── livecell_coco_train.json
│   ├── livecell_coco_val.json
│   └── livecell_coco_test.json
├── train
├── train_semi_supervised
└── train.csv

Start a docker container and run the following commands

mkdir /data/checkpoints/
python tools/prepare_livecell.py
python tools/prepare_kaggle.py

The results should look like the

├── LIVECell_dataset_2021
│   ├── images
│   ├── train_8class.json
│   ├── val_8class.json
│   ├── test_8class.json
│   ├── livecell_coco_train.json
│   ├── livecell_coco_val.json
│   └── livecell_coco_test.json
├── train
├── train_semi_supervised
├── checkpoints
├── train.csv
├── dtrainval.json
├── dtrain_g0.json
└── dval_g0.json

Training

Download COCO pretrained YOLOX-x weights from https://github.com/Megvii-BaseDetection/YOLOX

Convert the weights

python tools/convert_official_yolox.py /path/to/yolox_x.pth /path/to/data/checkpoints/yolox_x_coco.pth

Start a docker container and run the following commands for training

# train detector using the LIVECell dataset
python tools/det/train.py configs/det/yolox_x_livecell.py

# predict bboxes of LIVECell validataion data
python tools/det/test.py configs/det/yolox_x_livecell.py work_dirs/yolox_x_livecell/epoch_30.pth --out work_dirs/yolox_x_livecell/val_preds.pkl --eval bbox

# finetune the detector on competition data(train split)
python tools/det/train.py configs/det/yolox_x_kaggle.py --load-from work_dirs/yolox_x_livecell/epoch_15.pth

# predict bboxes of competition data(val split)
python tools/det/test.py configs/det/yolox_x_kaggle.py work_dirs/yolox_x_kaggle/epoch_30.pth --out work_dirs/yolox_x_kaggle/val_preds.pkl --eval bbox

# train segmentor using LIVECell dataset
python tools/seg/train.py configs/seg/upernet_swin-t_livecell.py

# finetune the segmentor on competition data(train split)
python tools/seg/train.py configs/seg/upernet_swin-t_kaggle.py --load-from work_dirs/upernet_swin-t_livecell/epoch_1.pth

# predict instance masks of competition data(val split)
python tools/seg/test.py configs/seg/upernet_swin-t_kaggle.py work_dirs/upernet_swin-t_kaggle/epoch_10.pth --out work_dirs/upernet_swin-t_kaggle/val_results.pkl --eval dummy
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
An automated facial recognition based attendance system (desktop application)

Facial_Recognition_based_Attendance_System An automated facial recognition based attendance system (desktop application) Made using Python, Tkinter an

1 Jun 21, 2022
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

PyGRANSO PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Please check https://ncvx.org/PyGRANSO for detailed instructions (introd

SUN Group @ UMN 26 Nov 16, 2022
Streamlit App For Product Analysis - Streamlit App For Product Analysis

Streamlit_App_For_Product_Analysis Здравствуйте! Перед вами дашборд, позволяющий

Grigory Sirotkin 1 Jan 10, 2022
PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision.

PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{CV2018, author = {Donny You ( Donny You 40 Sep 14, 2022

CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
Testbed of AI Systems Quality Management

qunomon Description A testbed for testing and managing AI system qualities. Demo Sorry. Not deployment public server at alpha version. Requirement Ins

AIST AIRC 15 Nov 27, 2021
Implementation for the paper 'YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs'

YOLO-ReT This is the original implementation of the paper: YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs. Prakhar Ganesh, Ya

69 Oct 19, 2022
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023