FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

Overview

PWC

PWC

PWC

License: GPL v3

FPGA & FreeNet

Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification
by Zhuo Zheng, Yanfei Zhong, Ailong Ma and Liangpei Zhang


This is an official implementation of FPGA framework and FreeNet in our TGRS 2020 paper "FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification".

We hope the FPGA framework can become a stronger and cleaner baseline for hyperspectral image classification research in the future.

News

  1. 2020/05/28, We release the code of FreeNet and FPGA framework.

Features

  1. Patch-free training and inference
  2. Fully end-to-end (w/o preprocess technologies, such as dimension reduction)

Citation

If you use FPGA framework or FreeNet in your research, please cite the following paper:

@article{zheng2020fpga,
  title={FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification},
  author={Zheng, Zhuo and Zhong, Yanfei and Ma, Ailong and Zhang, Liangpei},
  journal={IEEE Transactions on Geoscience and Remote Sensing},
  year={2020},
  publisher={IEEE},
  note={doi: {10.1109/TGRS.2020.2967821}}
}

Getting Started

1. Install SimpleCV

pip install --upgrade git+https://github.com/Z-Zheng/SimpleCV.git

2. Prepare datasets

It is recommended to symlink the dataset root to $FreeNet.

The project should be organized as:

FreeNet
├── configs     // configure files
├── data        // dataset and dataloader class
├── module      // network arch.
├── scripts 
├── pavia       // data 1
│   ├── PaviaU.mat
│   ├── PaviaU_gt.mat
├── salinas     // data 2
│   ├── Salinas_corrected.mat
│   ├── Salinas_gt.mat
├── GRSS2013    // data 3
│   ├── 2013_IEEE_GRSS_DF_Contest_CASI.tif
│   ├── train_roi.tif
│   ├── val_roi.tif

3. run experiments

1. PaviaU

bash scripts/freenet_1_0_pavia.sh

2. Salinas

bash scripts/freenet_1_0_salinas.sh

3. GRSS2013

bash scripts/freenet_1_0_grss.sh

License

This source code is released under GPLv3 license.

For commercial use, please contact Prof. Zhong ([email protected]).

Projects using FPGA/FreeNet

Welcome to pull request if you use this repo as your codebase.

You might also like...
End-to-End Object Detection with Fully Convolutional Network
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

KE-Dialogue: Injecting knowledge graph into a fully end-to-end dialogue system.
KE-Dialogue: Injecting knowledge graph into a fully end-to-end dialogue system.

Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems This is the implementation of the paper: Learning Knowledge Bases with Par

Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Global Filter Networks for Image Classification
Global Filter Networks for Image Classification

Global Filter Networks for Image Classification Created by Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, Jie Zhou This repository contains PyTorch

FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

⚡ Fast • 🪶 Lightweight • 0️⃣ Dependency • 🔌 Pluggable • 😈 TLS interception • 🔒 DNS-over-HTTPS • 🔥 Poor Man's VPN • ⏪ Reverse & ⏩ Forward • 👮🏿  WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Simple-Image-Classification - Simple Image Classification Code (PyTorch)
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

Comments
  • Some issues about the code.

    Some issues about the code.

    I try to run your code on the Pavia data set.

    Traceback (most recent call last): File "d:/FreeNet-master/train.py", line 63, in opts=args.opts) File "D:\software\anaconda\lib\site-packages\simplecv\dp_train.py", line 44, in run traindata_loader = make_dataloader(cfg['data']['train']) File "D:\software\anaconda\lib\site-packages\simplecv\data\data_loader.py", line 9, in make_dataloader raise ValueError('{} is not support now.'.format(dataloader_type)) ValueError: NewPaviaLoader is not support now.

    Looking forward to hearing from you!

    opened by zhe-meng 2
  • Test.py module

    Test.py module

    Hello!

    I really appreciate your paper and sharing the code for it. I wonder is there an option to make a test on the trainned network on another image? I saw test dict in config file, but I'm not sure it is implemented for now. Is there any plans for it or will you please suggest how can it be done better?

    Thanks!

    opened by valeriylo 0
  • 运行 train.py时报错

    运行 train.py时报错

    Traceback (most recent call last): File "D:/论文代码书/代码/高光谱影像分类/全卷积FCN/FreeNet-master/train.py", line 60, in train.run(config_path=args.config_path, File "D:\Anaconda\envs\Pytorch\lib\site-packages\simplecv-0.3.4-py3.8.egg\simplecv\dp_train.py", line 29, in run cfg = config.import_config(config_path) File "D:\Anaconda\envs\Pytorch\lib\site-packages\simplecv-0.3.4-py3.8.egg\simplecv\util\config.py", line 5, in import_config m = importlib.import_module(name='{}.{}'.format(prefix, config_name)) File "D:\Anaconda\envs\Pytorch\lib\importlib_init_.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "", line 1014, in _gcd_import File "", line 991, in _find_and_load File "", line 973, in _find_and_load_unlocked ModuleNotFoundError: No module named 'configs.None'

    opened by Zhengpu-L 1
  • 在安装simpleCV时出现报错

    在安装simpleCV时出现报错

    您好,我在终端安装simpleCV时出现了以下报错: ERROR: Could not find a version that satisfies the requirement tensorboardX==1.7 (from simplecv) (from versions: none) ERROR: No matching distribution found for tensorboardX==1.7 请问您知道如何解决吗,simpleCV是基于tensorflow框架的吗,但freenet好像是基于pytorch,很抱歉打扰您

    opened by wangk98 3
Releases(v1.2)
Owner
Zhuo Zheng
CV IN RS. Ph.D. Student.
Zhuo Zheng
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective Installin

2 Nov 07, 2022
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
Official PyTorch Implementation of Convolutional Hough Matching Networks, CVPR 2021 (oral)

Convolutional Hough Matching Networks This is the implementation of the paper "Convolutional Hough Matching Network" by J. Min and M. Cho. Implemented

Juhong Min 70 Nov 22, 2022
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
(CVPR2021) DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation CVPR2021(oral) [arxiv] Requirements python3.7 pytorch==

W-zx-Y 85 Dec 07, 2022
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
The code of “Similarity Reasoning and Filtration for Image-Text Matching” [AAAI2021]

SGRAF PyTorch implementation for AAAI2021 paper of “Similarity Reasoning and Filtration for Image-Text Matching”. It is built on top of the SCAN and C

Ronnie_IIAU 149 Dec 22, 2022
Learning Efficient Online 3D Bin Packing on Packing Configuration Trees

Learning Efficient Online 3D Bin Packing on Packing Configuration Trees This repository is being continuously updated, please stay tuned! Any code con

86 Dec 28, 2022
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

38 Dec 27, 2022