Instant Real-Time Example-Based Style Transfer to Facial Videos

Related tags

Deep LearningFaceBlit
Overview

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos

The official implementation of

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos
A. Texler, O. Texler, M. Kučera, M. Chai, and D. Sýkora
🌐 Project Page, 📄 Paper, 📚 BibTeX

FaceBlit is a system for real-time example-based face video stylization that retains textural details of the style in a semantically meaningful manner, i.e., strokes used to depict specific features in the style are present at the appropriate locations in the target image. As compared to previous techniques, our system preserves the identity of the target subject and runs in real-time without the need for large datasets nor lengthy training phase. To achieve this, we modify the existing face stylization pipeline of Fišer et al. [2017] so that it can quickly generate a set of guiding channels that handle identity preservation of the target subject while are still compatible with a faster variant of patch-based synthesis algorithm of Sýkora et al. [2019]. Thanks to these improvements we demonstrate a first face stylization pipeline that can instantly transfer artistic style from a single portrait to the target video at interactive rates even on mobile devices.

Teaser

Introduction

⚠️ DISCLAIMER: This is a research project, not a production-ready application, it may contain bugs!

This implementation is designed for two platforms - Windows and Android.

  • All C++ sources are located in FaceBlit/app/src/main/cpp, except for main.cpp and main_extension.cpp which can be found in FaceBlit/VS
  • All Java sources are stored in FaceBlit/app/src/main/java/texler/faceblit
  • Style exemplars (.png) are located in FaceBlit/app/src/main/res/drawable
  • Files holding detected landmarks (.txt) and lookup tables (.bytes) for each style are located in FaceBlit/app/src/main/res/raw
  • The algorithm assumes the style image and input video/image have the same resolution

Build and Run

  • Clone the repository git clone https://github.com/AnetaTexler/FaceBlit.git
  • The repository contains all necessary LIB files and includes for both platforms, except for the OpenCV DLL files for Windows
  • The project uses Dlib 19.21 which is added as one source file (FaceBlit/app/src/main/cpp/source.cpp) and will be compiled with other sources; so you don't have to worry about that

Windows

  • The OpenCV 4.5.0 is required, you can download the pre-built version directly from here and add opencv_world450d.dll and opencv_world450.dll files from opencv-4.5.0-vc14_vc15/build/x64/vc15/bin into your PATH
  • Open the solution FaceBlit/VS/FaceBlit.sln in Visual Studio (tested with VS 2019)
  • Provide a facial video/image or use existing sample videos and images in FaceBlit/VS/TESTS.
    • The input video/image has to be in resolution 768x1024 pixels (width x height)
  • In main() function in FaceBlit/VS/main.cpp, you can change parameters:
    • targetPath - path to input images and videos (there are some sample inputs in FaceBlit/VS/TESTS)
    • targetName - name of a target PNG image or MP4 video with extension (e.g. "target2.mp4")
    • styleName - name of a style with extension from the FaceBlit/app/src/main/res/drawable path (e.g. "style_het.png")
    • stylizeBG - true/false (true - stylize the whole image/video, does not always deliver pleasing results; false - stylize only face)
    • NNF_patchsize - voting patch size (odd number, ideal is 3 or 5); 0 for no voting
  • Finally, run the code and see results in FaceBlit/VS/TESTS

Android

  • OpenCV binaries (.so) are already included in the repository (FaceBlit/app/src/main/jniLibs)
  • Open the FaceBlit project in Android Studio (tested with Android Studio 4.1.3 and gradle 6.5), install NDK 21.0.6 via File > Settings > Appearance & Behavior > System Settings > Android SDK > SDK Tools and build the project.
  • Install the application on your mobile and face to the camera (works with both front and back). Press the right bottom button to display styles (scroll right to show more) and choose one. Wait a few seconds until the face detector loads, and enjoy the style transfer!

License

The algorithm is not patented. The code is released under the public domain - feel free to use it for research or commercial purposes.

Citing

If you find FaceBlit useful for your research or work, please use the following BibTeX entry.

@Article{Texler21-I3D,
    author    = "Aneta Texler and Ond\v{r}ej Texler and Michal Ku\v{c}era and Menglei Chai and Daniel S\'{y}kora",
    title     = "FaceBlit: Instant Real-time Example-based Style Transfer to Facial Videos",
    journal   = "Proceedings of the ACM in Computer Graphics and Interactive Techniques",
    volume    = "4",
    number    = "1",
    year      = "2021",
}
Owner
Aneta Texler
Aneta Texler
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Tube Self-Attention Network (TSA-Net) This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Qu

ShunliWang 18 Dec 23, 2022
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit

148 Dec 30, 2022
This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".

AS-MLP architecture for Image Classification Model Zoo Image Classification on ImageNet-1K Network Resolution Top-1 (%) Params FLOPs Throughput (image

SVIP Lab 106 Dec 12, 2022
Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021)

Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021) This repository is for the following paper: "Investigating Attention

52 Nov 19, 2022
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022
LSTM-VAE Implementation and Relevant Evaluations

LSTM-VAE Implementation and Relevant Evaluations Before using any file in this repository, please create two directories under the root directory name

Lan Zhang 5 Oct 08, 2022
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022