Instant Real-Time Example-Based Style Transfer to Facial Videos

Related tags

Deep LearningFaceBlit
Overview

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos

The official implementation of

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos
A. Texler, O. Texler, M. Kučera, M. Chai, and D. Sýkora
🌐 Project Page, 📄 Paper, 📚 BibTeX

FaceBlit is a system for real-time example-based face video stylization that retains textural details of the style in a semantically meaningful manner, i.e., strokes used to depict specific features in the style are present at the appropriate locations in the target image. As compared to previous techniques, our system preserves the identity of the target subject and runs in real-time without the need for large datasets nor lengthy training phase. To achieve this, we modify the existing face stylization pipeline of Fišer et al. [2017] so that it can quickly generate a set of guiding channels that handle identity preservation of the target subject while are still compatible with a faster variant of patch-based synthesis algorithm of Sýkora et al. [2019]. Thanks to these improvements we demonstrate a first face stylization pipeline that can instantly transfer artistic style from a single portrait to the target video at interactive rates even on mobile devices.

Teaser

Introduction

⚠️ DISCLAIMER: This is a research project, not a production-ready application, it may contain bugs!

This implementation is designed for two platforms - Windows and Android.

  • All C++ sources are located in FaceBlit/app/src/main/cpp, except for main.cpp and main_extension.cpp which can be found in FaceBlit/VS
  • All Java sources are stored in FaceBlit/app/src/main/java/texler/faceblit
  • Style exemplars (.png) are located in FaceBlit/app/src/main/res/drawable
  • Files holding detected landmarks (.txt) and lookup tables (.bytes) for each style are located in FaceBlit/app/src/main/res/raw
  • The algorithm assumes the style image and input video/image have the same resolution

Build and Run

  • Clone the repository git clone https://github.com/AnetaTexler/FaceBlit.git
  • The repository contains all necessary LIB files and includes for both platforms, except for the OpenCV DLL files for Windows
  • The project uses Dlib 19.21 which is added as one source file (FaceBlit/app/src/main/cpp/source.cpp) and will be compiled with other sources; so you don't have to worry about that

Windows

  • The OpenCV 4.5.0 is required, you can download the pre-built version directly from here and add opencv_world450d.dll and opencv_world450.dll files from opencv-4.5.0-vc14_vc15/build/x64/vc15/bin into your PATH
  • Open the solution FaceBlit/VS/FaceBlit.sln in Visual Studio (tested with VS 2019)
  • Provide a facial video/image or use existing sample videos and images in FaceBlit/VS/TESTS.
    • The input video/image has to be in resolution 768x1024 pixels (width x height)
  • In main() function in FaceBlit/VS/main.cpp, you can change parameters:
    • targetPath - path to input images and videos (there are some sample inputs in FaceBlit/VS/TESTS)
    • targetName - name of a target PNG image or MP4 video with extension (e.g. "target2.mp4")
    • styleName - name of a style with extension from the FaceBlit/app/src/main/res/drawable path (e.g. "style_het.png")
    • stylizeBG - true/false (true - stylize the whole image/video, does not always deliver pleasing results; false - stylize only face)
    • NNF_patchsize - voting patch size (odd number, ideal is 3 or 5); 0 for no voting
  • Finally, run the code and see results in FaceBlit/VS/TESTS

Android

  • OpenCV binaries (.so) are already included in the repository (FaceBlit/app/src/main/jniLibs)
  • Open the FaceBlit project in Android Studio (tested with Android Studio 4.1.3 and gradle 6.5), install NDK 21.0.6 via File > Settings > Appearance & Behavior > System Settings > Android SDK > SDK Tools and build the project.
  • Install the application on your mobile and face to the camera (works with both front and back). Press the right bottom button to display styles (scroll right to show more) and choose one. Wait a few seconds until the face detector loads, and enjoy the style transfer!

License

The algorithm is not patented. The code is released under the public domain - feel free to use it for research or commercial purposes.

Citing

If you find FaceBlit useful for your research or work, please use the following BibTeX entry.

@Article{Texler21-I3D,
    author    = "Aneta Texler and Ond\v{r}ej Texler and Michal Ku\v{c}era and Menglei Chai and Daniel S\'{y}kora",
    title     = "FaceBlit: Instant Real-time Example-based Style Transfer to Facial Videos",
    journal   = "Proceedings of the ACM in Computer Graphics and Interactive Techniques",
    volume    = "4",
    number    = "1",
    year      = "2021",
}
Owner
Aneta Texler
Aneta Texler
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
Learning Representations that Support Robust Transfer of Predictors

Transfer Risk Minimization (TRM) Code for Learning Representations that Support Robust Transfer of Predictors Prepare the Datasets Preprocess the Scen

Yilun Xu 15 Dec 07, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022
Reproduce results and replicate training fo T0 (Multitask Prompted Training Enables Zero-Shot Task Generalization)

T-Zero This repository serves primarily as codebase and instructions for training, evaluation and inference of T0. T0 is the model developed in Multit

BigScience Workshop 253 Dec 27, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
A python module for configuration of block devices

Blivet is a python module for system storage configuration. CI status Licence See COPYING Installation From Fedora repositories Blivet is available in

78 Dec 14, 2022
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

880 Jan 07, 2023
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023
CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors   In order to facilitate the res

yujmo 11 Dec 12, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

38 Dec 27, 2022
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023