Instant Real-Time Example-Based Style Transfer to Facial Videos

Related tags

Deep LearningFaceBlit
Overview

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos

The official implementation of

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos
A. Texler, O. Texler, M. Kučera, M. Chai, and D. Sýkora
🌐 Project Page, 📄 Paper, 📚 BibTeX

FaceBlit is a system for real-time example-based face video stylization that retains textural details of the style in a semantically meaningful manner, i.e., strokes used to depict specific features in the style are present at the appropriate locations in the target image. As compared to previous techniques, our system preserves the identity of the target subject and runs in real-time without the need for large datasets nor lengthy training phase. To achieve this, we modify the existing face stylization pipeline of Fišer et al. [2017] so that it can quickly generate a set of guiding channels that handle identity preservation of the target subject while are still compatible with a faster variant of patch-based synthesis algorithm of Sýkora et al. [2019]. Thanks to these improvements we demonstrate a first face stylization pipeline that can instantly transfer artistic style from a single portrait to the target video at interactive rates even on mobile devices.

Teaser

Introduction

⚠️ DISCLAIMER: This is a research project, not a production-ready application, it may contain bugs!

This implementation is designed for two platforms - Windows and Android.

  • All C++ sources are located in FaceBlit/app/src/main/cpp, except for main.cpp and main_extension.cpp which can be found in FaceBlit/VS
  • All Java sources are stored in FaceBlit/app/src/main/java/texler/faceblit
  • Style exemplars (.png) are located in FaceBlit/app/src/main/res/drawable
  • Files holding detected landmarks (.txt) and lookup tables (.bytes) for each style are located in FaceBlit/app/src/main/res/raw
  • The algorithm assumes the style image and input video/image have the same resolution

Build and Run

  • Clone the repository git clone https://github.com/AnetaTexler/FaceBlit.git
  • The repository contains all necessary LIB files and includes for both platforms, except for the OpenCV DLL files for Windows
  • The project uses Dlib 19.21 which is added as one source file (FaceBlit/app/src/main/cpp/source.cpp) and will be compiled with other sources; so you don't have to worry about that

Windows

  • The OpenCV 4.5.0 is required, you can download the pre-built version directly from here and add opencv_world450d.dll and opencv_world450.dll files from opencv-4.5.0-vc14_vc15/build/x64/vc15/bin into your PATH
  • Open the solution FaceBlit/VS/FaceBlit.sln in Visual Studio (tested with VS 2019)
  • Provide a facial video/image or use existing sample videos and images in FaceBlit/VS/TESTS.
    • The input video/image has to be in resolution 768x1024 pixels (width x height)
  • In main() function in FaceBlit/VS/main.cpp, you can change parameters:
    • targetPath - path to input images and videos (there are some sample inputs in FaceBlit/VS/TESTS)
    • targetName - name of a target PNG image or MP4 video with extension (e.g. "target2.mp4")
    • styleName - name of a style with extension from the FaceBlit/app/src/main/res/drawable path (e.g. "style_het.png")
    • stylizeBG - true/false (true - stylize the whole image/video, does not always deliver pleasing results; false - stylize only face)
    • NNF_patchsize - voting patch size (odd number, ideal is 3 or 5); 0 for no voting
  • Finally, run the code and see results in FaceBlit/VS/TESTS

Android

  • OpenCV binaries (.so) are already included in the repository (FaceBlit/app/src/main/jniLibs)
  • Open the FaceBlit project in Android Studio (tested with Android Studio 4.1.3 and gradle 6.5), install NDK 21.0.6 via File > Settings > Appearance & Behavior > System Settings > Android SDK > SDK Tools and build the project.
  • Install the application on your mobile and face to the camera (works with both front and back). Press the right bottom button to display styles (scroll right to show more) and choose one. Wait a few seconds until the face detector loads, and enjoy the style transfer!

License

The algorithm is not patented. The code is released under the public domain - feel free to use it for research or commercial purposes.

Citing

If you find FaceBlit useful for your research or work, please use the following BibTeX entry.

@Article{Texler21-I3D,
    author    = "Aneta Texler and Ond\v{r}ej Texler and Michal Ku\v{c}era and Menglei Chai and Daniel S\'{y}kora",
    title     = "FaceBlit: Instant Real-time Example-based Style Transfer to Facial Videos",
    journal   = "Proceedings of the ACM in Computer Graphics and Interactive Techniques",
    volume    = "4",
    number    = "1",
    year      = "2021",
}
Owner
Aneta Texler
Aneta Texler
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Ro

Meta Research 1.2k Jan 02, 2023
[CVPR 2021] Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans Introduction We introduce the task of dense captioning in 3D scans from commodity RGB-D sensor

Dave Z. Chen 79 Nov 07, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
StyleMapGAN - Official PyTorch Implementation

StyleMapGAN - Official PyTorch Implementation StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing Hyunsu Kim, Yunj

NAVER AI 425 Dec 23, 2022
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
ATAC: Adversarially Trained Actor Critic

ATAC: Adversarially Trained Actor Critic Adversarially Trained Actor Critic for Offline Reinforcement Learning by Ching-An Cheng*, Tengyang Xie*, Nan

Microsoft 41 Dec 08, 2022
Embeds a story into a music playlist by sorting the playlist so that the order of the music follows a narrative arc.

playlist-story-builder This project attempts to embed a story into a music playlist by sorting the playlist so that the order of the music follows a n

Dylan R. Ashley 0 Oct 28, 2021
Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Perceiver - Pytorch Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch Install $ pip install perceiver-pytorch Usage

Phil Wang 876 Dec 29, 2022
Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022
Finite Element Analysis

FElupe - Finite Element Analysis FElupe is a Python 3.6+ finite element analysis package focussing on the formulation and numerical solution of nonlin

Andreas D. 20 Jan 09, 2023
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 14 Oct 27, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
Improving Factual Consistency of Abstractive Text Summarization

Improving Factual Consistency of Abstractive Text Summarization We provide the code for the papers: "Entity-level Factual Consistency of Abstractive T

61 Nov 27, 2022
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua

Olivier Veilleux 14 Dec 13, 2022
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022