A Broad Study on the Transferability of Visual Representations with Contrastive Learning

Overview

A Broad Study on the Transferability of Visual Representations with Contrastive Learning

Paper

This repository contains code for the paper: A Broad Study on the Transferability of Visual Representations with Contrastive Learning

Prerequisites

  • PyTorch 1.7
  • pytorch-lightning 1.1.5

Install the required dependencies by:

pip install -r environments/requirements.txt

How to Run

Download Datasets

The data should be located in ~/datasets/cdfsl folder. To download all the datasets:

bash data_loader/download.sh 

Training

python main.py --system ${system}  --dataset ${train_dataset} --gpus -1 --model resnet50 

where system is one of base_finetune(ce), moco (SelfSupCon), moco_mit (SupCon), base_plus_moco (CE+SelfSupCon), or supervised_mean2 (SupCon+SelfSupCon).

To know more about the cli arguments, see configs.py.

You can also run the training script by bash scripts/run_linear_bn.sh -m train.

Evaluation

Linear evaluation

python main.py --system linear_eval \
  --train_aug true --val_aug false \
  --dataset ${val_data}_train --val_dataset ${val_data}_test \
  --ckpt ${ckpt} --load_base --batch_size ${bs} \
  --lr ${lr} --optim_wd ${wd}  --linear_bn --linear_bn_affine false \
  --scheduler step  --step_lr_milestones ${_milestones}

You can also run the evaluation script by bash scripts/run_linear_bn.sh -m tune to hyper-parameter tune, and then bash scripts/run_linear_bn.sh -m test to do linear-evaluation on the optimal hyper-parameter.

Few-shot

python main.py --system few_shot \
    --val_dataset ${val_data} \
    --load_base --test --model ${model} \
    --ckpt ${ckpt} --num_workers 4

You can also run the evaluation script by bash scripts/run_fewshot.sh.

Full-network finetuning

python main.py --system linear_transfer \
    --dataset ${val_data}_train --val_dataset ${val_data}_test \
    --ckpt ${ckpt} --load_base \
    --batch_size ${bs} --lr ${lr} --optim_wd ${wd} \
    --scheduler step  --step_lr_milestones ${_milestones} \
    --linear_bn --linear_bn_affine false \
    --max_epochs ${max_epochs}

You can also run the evaluation script by bash scripts/run_transfer_bn.sh -m tune to hyper-parameter tune, and then bash scripts/run_transfer_bn.sh -m test to do linear-evaluation on the optimal hyper-parameter.

Pretrained models

  • ImageNet pretrained models can be found here

  • mini-ImageNet pretrained models can be found here

You can also convert our pretrained checkpoint into torchvision resnet style checkpoint by python utils/convert_to_torchvision_resnet.py -i [input ckpt] -o [output path]

Citation

If you find this repo useful for your research, please consider citing the paper:

@misc{islam2021broad,
      title={A Broad Study on the Transferability of Visual Representations with Contrastive Learning}, 
      author={Ashraful Islam and Chun-Fu Chen and Rameswar Panda and Leonid Karlinsky and Richard Radke and Rogerio Feris},
      year={2021},
      eprint={2103.13517},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement

You might also like...
SUPERVISED-CONTRASTIVE-LEARNING-FOR-PRE-TRAINED-LANGUAGE-MODEL-FINE-TUNING - The Facebook paper about fine tuning RoBERTa with contrastive loss
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

Comments
  • eurosat.zip cannot be found on google drive

    eurosat.zip cannot be found on google drive

    eurosat.zip cannot be found on google drive with the url: https://drive.google.com/uc?id=1FYZvuBePf2tuEsEaBCsACtIHi6eFpSwe

    Can you please check the url? Thank you.

    opened by Cohesion97 2
  • How to get CKA scores between different stages in Figure 4?

    How to get CKA scores between different stages in Figure 4?

    Thanks for your amazing study! I have some questions about the CKA scores shown in Figure 4. Take ResNet-50 as an example, which has five stages.

    1. Does stage 5 include the average pooling layer to output the feature of size 1x2048?
    2. Given an input sample, for the feature after each in-between stage (1-4), do you flatten the original feature map (1 x c x h x w) to a vector (1 x chw) OR do you adopt an extra average pooling process to obtain a vector (1 x c)? I've tried to flatten the feature map after each stage but obtained a very high-dimension vector (about 1M).

    (c: feature dimension; h: height; w: width) Looking forward to your reply, thanks.

    opened by klfsalfjl 0
Releases(v0.1.0)
Owner
Ashraful Islam
Ashraful Islam
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022
Robocop is your personal mini voice assistant made using Python.

Robocop-VoiceAssistant To use this project, you should have python installed in your system. If you don't have python installed, install it beforehand

Sohil Khanduja 3 Feb 26, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
MISSFormer: An Effective Medical Image Segmentation Transformer

MISSFormer Code for paper "MISSFormer: An Effective Medical Image Segmentation Transformer". Please read our preprint at the following link: paper_add

Fong 22 Dec 24, 2022
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
QuanTaichi evaluation suite

QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021) Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, W

Taichi Developers 120 Jan 04, 2023
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
Next-Best-View Estimation based on Deep Reinforcement Learning for Active Object Classification

next_best_view_rl Setup Clone the repository: git clone --recurse-submodules ... In 'third_party/zed-ros-wrapper': git checkout devel Install mujoco `

Christian Korbach 1 Feb 15, 2022
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
The all new way to turn your boring vector meshes into the new fad in town; Voxels!

Voxelator The all new way to turn your boring vector meshes into the new fad in town; Voxels! Notes: I have not tested this on a rotated mesh. With fu

6 Feb 03, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
[WWW 2021] Source code for "Graph Contrastive Learning with Adaptive Augmentation"

GCA Source code for Graph Contrastive Learning with Adaptive Augmentation (WWW 2021) For example, to run GCA-Degree under WikiCS, execute: python trai

Big Data and Multi-modal Computing Group, CRIPAC 97 Jan 07, 2023