Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

Overview

UnivNet

UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

This is an unofficial PyTorch implementation of Jang et al. (Kakao), UnivNet.

arXiv githubio License

To-Do List

  • Release checkpoint of pre-trained model
  • Extract wav samples for audio sample page
  • Add results including validation loss graph

Key Features

  • According to the authors of the paper, UnivNet obtained the best objective results among the recent GAN-based neural vocoders (including HiFi-GAN) as well as outperforming HiFi-GAN in a subjective evaluation. Also its inference speed is 1.5 times faster than HiFi-GAN.

  • This repository uses the same mel-spectrogram function as the Official HiFi-GAN, which is compatible with NVIDIA/tacotron2.

  • Our default mel calculation hyperparameters are as below, following the original paper.

    audio:
      n_mel_channels: 100
      filter_length: 1024
      hop_length: 256 # WARNING: this can't be changed.
      win_length: 1024
      sampling_rate: 24000
      mel_fmin: 0.0
      mel_fmax: 12000.0

    You can modify the hyperparameters to be compatible with your acoustic model.

Prerequisites

The implementation needs following dependencies.

  1. Python 3.6
  2. PyTorch 1.6.0
  3. NumPy 1.17.4 and SciPy 1.5.4
  4. Install other dependencies in requirements.txt.
    pip install -r requirements.txt

Datasets

Preparing Data

  • Download the training dataset. This can be any wav file with sampling rate 24,000Hz. The original paper used LibriTTS.
    • LibriTTS train-clean-360 split tar.gz link
    • Unzip and place its contents under datasets/LibriTTS/train-clean-360.
  • If you want to use wav files with a different sampling rate, please edit the configuration file (see below).

Note: The mel-spectrograms calculated from audio file will be saved as **.mel at first, and then loaded from disk afterwards.

Preparing Metadata

Following the format from NVIDIA/tacotron2, the metadata should be formatted as:

path_to_wav|transcript|speaker_id
path_to_wav|transcript|speaker_id
...

Train/validation metadata for LibriTTS train-clean-360 split and are already prepared in datasets/metadata. 5% of the train-clean-360 utterances were randomly sampled for validation.

Since this model is a vocoder, the transcripts are NOT used during training.

Train

Preparing Configuration Files

  • Run cp config/default.yaml config/config.yaml and then edit config.yaml

  • Write down the root path of train/validation in the data section. The data loader parses list of files within the path recursively.

    data:
      train_dir: 'datasets/'	# root path of train data (either relative/absoulte path is ok)
      train_meta: 'metadata/libritts_train_clean_360_train.txt'	# relative path of metadata file from train_dir
      val_dir: 'datasets/'		# root path of validation data
      val_meta: 'metadata/libritts_train_clean_360_val.txt'		# relative path of metadata file from val_dir

    We provide the default metadata for LibriTTS train-clean-360 split.

  • Modify channel_size in gen to switch between UnivNet-c16 and c32.

    gen:
      noise_dim: 64
      channel_size: 32 # 32 or 16
      dilations: [1, 3, 9, 27]
      strides: [8, 8, 4]
      lReLU_slope: 0.2

Training

python trainer.py -c CONFIG_YAML_FILE -n NAME_OF_THE_RUN

Tensorboard

tensorboard --logdir logs/

If you are running tensorboard on a remote machine, you can open the tensorboard page by adding --bind_all option.

Inference

python inference.py -p CHECKPOINT_PATH -i INPUT_MEL_PATH

Pre-trained Model

A pre-trained model will be released soon. The model was trained on LibriTTS train-clean-360 split.

Results

See audio samples at https://mindslab-ai.github.io/univnet/

Comparison with the results on paper

Model MOS PESQ(↑) RMSE(↓)
Recordings 4.16±0.09 4.50 0.000
Results in Paper (UnivNet-c32) 3.93±0.09 3.70 0.316
Ours (UnivNet-c32) - TBD TBD

Note

This code is an unofficial implementation, there may be some differences from the original paper.

  • Our UnivNet generator has smaller number of parameters (c32: 5.11M, c16: 1.42M) than the paper (c32: 14.89M, c16: 4.00M). So far, we have not encountered any issues from using a smaller model size. If run into any problem, please report it as an issue.

Implementation Authors

Implementation authors are:

Special thanks to

License

This code is licensed under BSD 3-Clause License.

We referred following codes and repositories.

References

Papers

Datasets

Owner
MINDs Lab
MINDsLab provides AI platform and various AI engines based on deep machine learning.
MINDs Lab
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
Official PyTorch Implementation of Convolutional Hough Matching Networks, CVPR 2021 (oral)

Convolutional Hough Matching Networks This is the implementation of the paper "Convolutional Hough Matching Network" by J. Min and M. Cho. Implemented

Juhong Min 70 Nov 22, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
Data Preparation, Processing, and Visualization for MoVi Data

MoVi-Toolbox Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/ MoVi is a large multipurpose dataset of

Saeed Ghorbani 51 Nov 27, 2022
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Stratified Transformer for 3D Point Cloud Segmentation Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

DV Lab 195 Jan 01, 2023
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
Genshin-assets - 👧 Public documentation & static assets for Genshin Impact data.

genshin-assets This repo provides easy access to the Genshin Impact assets, primarily for use on static sites. Sources Genshin Optimizer - An Artifact

Zerite Development 5 Nov 22, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
Implementation of Hourglass Transformer, in Pytorch, from Google and OpenAI

Hourglass Transformer - Pytorch (wip) Implementation of Hourglass Transformer, in Pytorch. It will also contain some of my own ideas about how to make

Phil Wang 61 Dec 25, 2022
Used to record WKU's utility bills on a regular basis.

WKU水电费小助手 一个用于定期记录WKU水电费的脚本 Looking for English Readme? 背景 由于WKU校园内的水电账单系统时常存在扣费延迟的现象,而补扣的费用缺乏令人信服的证明。不少学生为费用摸不着头脑,但也没有申诉的依据。为了更好地掌握水电费使用情况,留下一手证据,我开源

2 Jul 21, 2022
TrackTech: Real-time tracking of subjects and objects on multiple cameras

TrackTech: Real-time tracking of subjects and objects on multiple cameras This project is part of the 2021 spring bachelor final project of the Bachel

5 Jun 17, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

peng gao 42 Nov 26, 2022
Server files for UltimateLabeling

UltimateLabeling server files Server files for UltimateLabeling. git clone https://github.com/alexandre01/UltimateLabeling_server.git cd UltimateLabel

Alexandre Carlier 4 Oct 10, 2022
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

63 Dec 07, 2022
My coursework for Machine Learning (2021 Spring) at National Taiwan University (NTU)

Machine Learning 2021 Machine Learning (NTU EE 5184, Spring 2021) Instructor: Hung-yi Lee Course Website : (https://speech.ee.ntu.edu.tw/~hylee/ml/202

100 Dec 26, 2022
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022