Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Overview

docs/logo.png

Python Streaming Anomaly Detection (PySAD)

PyPI GitHub release (latest by date) Documentation status Gitter Azure Pipelines Build Status Travis CI Build Status Appveyor Build status Circle CI Coverage Status PyPI - Python Version Supported Platforms License

PySAD is an open-source python framework for anomaly detection on streaming multivariate data.

Documentation

Features

Online Anomaly Detection

PySAD provides methods for online/sequential anomaly detection, i.e. anomaly detection on streaming data, where model updates itself as a new instance arrives.

Resource-Efficient

Streaming methods efficiently handle the limitied memory and processing time requirements of the data streams so that they can be used in near real-time. The methods can only store an instance or a small window of recent instances.

Streaming Anomaly Detection Tools

PySAD contains stream simulators, evaluators, preprocessors, statistic trackers, postprocessors, probability calibrators and more. In addition to streaming models, PySAD also provides integrations for batch anomaly detectors of the PyOD so that they can be used in the streaming setting.

Comprehensiveness

PySAD serves models that are specifically designed for both univariate and multivariate data. Furthermore, one can experiment via PySAD in supervised, semi-supervised and unsupervised setting.

User Friendly

Users with any experience level can easily use PySAD. One can easily design experiments and combine the tools in the framework. Moreover, the existing methods in PySAD are easy to extend.

Free and Open Source Software (FOSS)

PySAD is distributed under BSD License 2.0 and favors FOSS principles.

Installation

The PySAD framework can be installed via:

pip install -U pysad

Alternatively, you can install the library directly using the source code in Github repository by:

git clone https://github.com/selimfirat/pysad.git
cd pysad
pip install .

Required Dependencies:

  • numpy>=1.18.5
  • scipy>=1.4.1
  • scikit-learn>=0.23.2
  • pyod>=0.7.7.1

Optional Dependencies:

  • rrcf==0.4.3 (Only required for pysad.models.robust_random_cut_forest.RobustRandomCutForest)
  • PyNomaly==0.3.3 (Only required for pysad.models.loop.StreamLocalOutlierProbability)
  • mmh3==2.5.1 (Only required for pysad.models.xstream.xStream)
  • pandas==1.1.0 (Only required for pysad.utils.pandas_streamer.PandasStreamer)

Quick Links

Versioning

Semantic versioning is used for this project.

License

This project is licensed under the BSD License 2.0.

Citing PySAD

If you use PySAD for a scientific publication, we would appreciate citations to the following paper:

@article{pysad,
  title={PySAD: A Streaming Anomaly Detection Framework in Python},
  author={Yilmaz, Selim F and Kozat, Suleyman S},
  journal={arXiv preprint arXiv:2009.02572},
  year={2020}
}
Comments
  • Your docs favicon makes me think a Colab notebook stopped with an error

    Your docs favicon makes me think a Colab notebook stopped with an error

    When I'm reading your documentation, the favicon you have looks almost identical to the Colab favicon when it stopped execution because of an error. I can't possibly be the only person that has been fooled by this.

    opened by FuriouStyles 0
  • There is a problem in the method fit_partial in reference_window_model.py

    There is a problem in the method fit_partial in reference_window_model.py

    In case initial_window_X is not provided, the training of the model will stop when the size cur_window_X is equal to window_size - 1 and restart when the size cur_window_X can be divided by sliding_size. This problem occurs mainly when window_size and sliding_size have different parity.

    opened by eljabrichaymae 0
  • How can I access the training data that has been used?

    How can I access the training data that has been used?

    Hello everyone,

    When a model has been trained, such as LocalOutlierProbability. How can I access the training data that has been used?

    I have managed to access the first dataset that is used when initialising the model: LocalOutlierProbability.model.data, but I need the new batch train data which is generated after call fit_partial(X).

    Thanks in advance!

    opened by joaquinCaceres 0
  • Only xStream could detect anomalous cases in the example

    Only xStream could detect anomalous cases in the example

    Hi, I tried different models based on example_usage.py but only xStream could detect anomalous cases, the other model either fail to run or does not predict any anomalous cases. Here is the code:

    # Import modules.
    from sklearn.utils import shuffle
    from pysad.evaluation import AUROCMetric
    from pysad.models import xStream
    from pysad.models import xStream, ExactStorm, HalfSpaceTrees, IForestASD, KitNet, KNNCAD, LODA, LocalOutlierProbability, MedianAbsoluteDeviation, RelativeEntropy, RobustRandomCutForest, RSHash
    from pysad.utils import ArrayStreamer
    from pysad.transform.postprocessing import RunningAveragePostprocessor
    from pysad.transform.preprocessing import InstanceUnitNormScaler
    from pysad.transform.probability_calibration import ConformalProbabilityCalibrator, GaussianTailProbabilityCalibrator
    from pysad.utils import Data
    from tqdm import tqdm
    import numpy as np
    from pdb import set_trace
    
    # This example demonstrates the usage of the most modules in PySAD framework.
    if __name__ == "__main__":
        np.random.seed(61)  # Fix random seed.
    
        # Get data to stream.
        data = Data("data")
        X_all, y_all = data.get_data("arrhythmia.mat")
        X_all, y_all = shuffle(X_all, y_all)
    
        iterator = ArrayStreamer(shuffle=False)  # Init streamer to simulate streaming data.
        # set_trace()
        model = xStream()  # Init xStream anomaly detection model.
        # model = ExactStorm(window_size=25)
        # model = HalfSpaceTrees(feature_mins=np.zeros(X_all.shape[1]), feature_maxes=np.ones(X_all.shape[1]))
        # model = IForestASD()
        # model = KitNet(grace_feature_mapping =100, max_size_ae=100)
        # model = KNNCAD(probationary_period=10)
        # model = LODA()
        # model = LocalOutlierProbability()
        # model = MedianAbsoluteDeviation()
        # model = RelativeEntropy(min_val=0, max_val=1)
        # model = RobustRandomCutForest(num_trees=200)
        # model = RSHash(feature_mins=0, feature_maxes=1)
        
        preprocessor = InstanceUnitNormScaler()  # Init normalizer.
        postprocessor = RunningAveragePostprocessor(window_size=5)  # Init running average postprocessor.
        auroc = AUROCMetric()  # Init area under receiver-operating- characteristics curve metric.
    
        calibrator = GaussianTailProbabilityCalibrator(window_size=100)  # Init probability calibrator.
        idx = 0
        for X, y in tqdm(iterator.iter(X_all[100:], y_all[100:])):  # Stream data.
            X = preprocessor.fit_transform_partial(X)  # Fit preprocessor to and transform the instance.
    
            score = model.fit_score_partial(X)  # Fit model to and score the instance.        
            score = postprocessor.fit_transform_partial(score)  # Apply running averaging to the score.
            
            # print(score)
            auroc.update(y, score)  # Update AUROC metric.
            try:
                # set_trace()
                calibrated_score = calibrator.fit_transform(score)  # Fit & calibrate score.
            except:           
                calibrated_score = 0
                # set_trace()
            # set_trace()
            # Output if the instance is anomalous.
            if calibrated_score > 0.95:  # If probability of being normal is less than 5%.
                print(f"Alert: {idx}th data point is anomalous.")
                
            idx += 1
    
        # Output resulting AUROCS metric.
        # print("AUROC: ", auroc.get())
    
    

    Does anyone know how to fix this problem ? Thank you very much.

    opened by dangmanhtruong1995 0
  • KitNet + RunningAveragePostprocessor producing nan scores

    KitNet + RunningAveragePostprocessor producing nan scores

    It seems that maybe when i use KitNet + a RunningAveragePostprocessor i am getting nan scores from the RunningAveragePostprocessor.

    If I do this:

    # Import modules.
    from sklearn.utils import shuffle
    from pysad.evaluation import AUROCMetric
    from pysad.models import xStream, RobustRandomCutForest, KNNCAD, ExactStorm, HalfSpaceTrees, IForestASD, KitNet
    from pysad.utils import ArrayStreamer
    from pysad.transform.postprocessing import RunningAveragePostprocessor
    from pysad.transform.preprocessing import InstanceUnitNormScaler
    from pysad.utils import Data
    from tqdm import tqdm
    import numpy as np
    
    # This example demonstrates the usage of the most modules in PySAD framework.
    if __name__ == "__main__":
        np.random.seed(61)  # Fix random seed.
    
        n_initial = 100
    
        # Get data to stream.
        data = Data("data")
        X_all, y_all = data.get_data("arrhythmia.mat")
        #X_all, y_all = shuffle(X_all, y_all)
        X_initial, y_initial = X_all[:n_initial], y_all[:n_initial]
        X_stream, y_stream = X_all[n_initial:], y_all[n_initial:]
    
        iterator = ArrayStreamer(shuffle=False)  # Init streamer to simulate streaming data.
    
        model = KitNet(max_size_ae=10, grace_feature_mapping=100, grace_anomaly_detector=100, learning_rate=0.1, hidden_ratio=0.75)
        preprocessor = InstanceUnitNormScaler()  # Init normalizer.
        postprocessor = RunningAveragePostprocessor(window_size=5)  # Init running average postprocessor.
        auroc = AUROCMetric()  # Init area under receiver-operating- characteristics curve metric.
    
        for X, y in tqdm(iterator.iter(X_stream, y_stream)):  # Stream data.
            X = preprocessor.fit_transform_partial(X)  # Fit preprocessor to and transform the instance.
    
            score = model.fit_score_partial(X)  # Fit model to and score the instance.
            print(score)
            #score = postprocessor.fit_transform_partial(score)  # Apply running averaging to the score.
            #print(score)
    
            auroc.update(y, score)  # Update AUROC metric.
    
        # Output resulting AUROCS metric.
        print("\nAUROC: ", auroc.get())
    

    I see output that looks generally ok but it seem like a nan got in that kinda breaks things when it comes to the AUC

    /usr/local/lib/python3.6/dist-packages/sklearn/utils/deprecation.py:143: FutureWarning: The sklearn.utils.testing module is  deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.utils. Anything that cannot be imported from sklearn.utils is now part of the private API.
      warnings.warn(message, FutureWarning)
    0it [00:00, ?it/s]/usr/local/lib/python3.6/dist-packages/pysad/models/kitnet_model/dA.py:119: RuntimeWarning: invalid value encountered in true_divide
      x = (x - self.norm_min) / (self.norm_max - self.norm_min + 0.0000000000000001)
    101it [00:00, 948.75it/s]Feature-Mapper: train-mode, Anomaly-Detector: off-mode
    0.0
    ...
    0.0
    The Feature-Mapper found a mapping: 274 features to 136 autoencoders.
    Feature-Mapper: execute-mode, Anomaly-Detector: train-mode
    nan
    176861904806278.84
    1.2789157528725288
    0.04468589042395759
    0.1220238749287982
    0.059888825651861544
    0.09122945608076023
    ...
    0.1389761646050123
    /usr/local/lib/python3.6/dist-packages/pysad/models/kitnet_model/utils.py:14: RuntimeWarning: overflow encountered in exp
      return 1. / (1 + numpy.exp(-x))
    220it [00:03, 54.62it/s]0.12782183995180338
    49677121607436.65
    136071359600522.08
    0.10972949863882411
    ...
    0.1299215446450402
    0.1567376498625513
    0.1494816850581486
    352it [00:05, 69.36it/s]
    0.1402801274133297
    0.18201141940107077
    52873910494109.26
    0.13997148683334693
    0.13615269873450922
    ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent call last)
    <ipython-input-3-8af057e15ede> in <module>()
         47 
         48     # Output resulting AUROCS metric.
    ---> 49     print("\nAUROC: ", auroc.get())
    
    6 frames
    /usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py in _assert_all_finite(X, allow_nan, msg_dtype)
         97                     msg_err.format
         98                     (type_err,
    ---> 99                      msg_dtype if msg_dtype is not None else X.dtype)
        100             )
        101     # for object dtype data, we only check for NaNs (GH-13254)
    
    ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
    

    I think the issue is the nan after the line The Feature-Mapper found a mapping: 274 features to 136 autoencoders. Feature-Mapper: execute-mode, Anomaly-Detector: train-mode

    This might be ok but if i then use it with a RunningAveragePostprocessor the nan seems to break the running average so its all just nans:

    # Import modules.
    from sklearn.utils import shuffle
    from pysad.evaluation import AUROCMetric
    from pysad.models import xStream, RobustRandomCutForest, KNNCAD, ExactStorm, HalfSpaceTrees, IForestASD, KitNet
    from pysad.utils import ArrayStreamer
    from pysad.transform.postprocessing import RunningAveragePostprocessor
    from pysad.transform.preprocessing import InstanceUnitNormScaler
    from pysad.utils import Data
    from tqdm import tqdm
    import numpy as np
    
    # This example demonstrates the usage of the most modules in PySAD framework.
    if __name__ == "__main__":
        np.random.seed(61)  # Fix random seed.
    
        n_initial = 100
    
        # Get data to stream.
        data = Data("data")
        X_all, y_all = data.get_data("arrhythmia.mat")
        #X_all, y_all = shuffle(X_all, y_all)
        X_initial, y_initial = X_all[:n_initial], y_all[:n_initial]
        X_stream, y_stream = X_all[n_initial:], y_all[n_initial:]
    
        iterator = ArrayStreamer(shuffle=False)  # Init streamer to simulate streaming data.
    
        model = KitNet(max_size_ae=10, grace_feature_mapping=100, grace_anomaly_detector=100, learning_rate=0.1, hidden_ratio=0.75)
        preprocessor = InstanceUnitNormScaler()  # Init normalizer.
        postprocessor = RunningAveragePostprocessor(window_size=5)  # Init running average postprocessor.
        auroc = AUROCMetric()  # Init area under receiver-operating- characteristics curve metric.
    
        for X, y in tqdm(iterator.iter(X_stream, y_stream)):  # Stream data.
            X = preprocessor.fit_transform_partial(X)  # Fit preprocessor to and transform the instance.
    
            score = model.fit_score_partial(X)  # Fit model to and score the instance.
            #print(score)
            score = postprocessor.fit_transform_partial(score)  # Apply running averaging to the score.
            print(score)
    
            auroc.update(y, score)  # Update AUROC metric.
    
        # Output resulting AUROCS metric.
        print("\nAUROC: ", auroc.get())
    

    So output with the nan sort of being propagated is:

    /usr/local/lib/python3.6/dist-packages/sklearn/utils/deprecation.py:143: FutureWarning: The sklearn.utils.testing module is  deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.utils. Anything that cannot be imported from sklearn.utils is now part of the private API.
      warnings.warn(message, FutureWarning)
    0it [00:00, ?it/s]/usr/local/lib/python3.6/dist-packages/pysad/models/kitnet_model/dA.py:119: RuntimeWarning: invalid value encountered in true_divide
      x = (x - self.norm_min) / (self.norm_max - self.norm_min + 0.0000000000000001)
    101it [00:00, 881.82it/s]Feature-Mapper: train-mode, Anomaly-Detector: off-mode
    0.0
    0.0
    0.0
    ...
    0.0
    The Feature-Mapper found a mapping: 274 features to 136 autoencoders.
    Feature-Mapper: execute-mode, Anomaly-Detector: train-mode
    nan
    nan
    nan
    nan
    185it [00:02, 46.04it/s]nan
    nan
    nan
    193it [00:02, 42.56it/s]nan
    nan
    nan
    200it [00:02, 41.06it/s]nan
    nan
    nan
    nan
    Feature-Mapper: execute-mode, Anomaly-Detector: exeute-mode
    nan
    nan
    206it [00:02, 45.11it/s]/usr/local/lib/python3.6/dist-packages/pysad/models/kitnet_model/utils.py:14: RuntimeWarning: overflow encountered in exp
      return 1. / (1 + numpy.exp(-x))
    213it [00:02, 49.93it/s]nan
    nan
    nan
    nan
    nan
    nan
    ...
    
    opened by andrewm4894 2
  • KNNCAD with low probationary_period fails

    KNNCAD with low probationary_period fails

    I think I found an issue if you set the probationary_period for KNNCAD to be too low.

    This was tripping me up a little so thought worth raising in here. I'm not quite sure what the solution would be - maybe some sort of reasonable default for probationary_period in KNNCAD could help others at least avoid this in future.

    Or maybe its just fine and people should not set such a low probationary_period but it was one of the first things i did so maybe others might too :)

    Reproducible example:

    # Import modules.
    from sklearn.utils import shuffle
    from pysad.evaluation import AUROCMetric
    from pysad.models import xStream, RobustRandomCutForest, KNNCAD
    from pysad.utils import ArrayStreamer
    from pysad.transform.postprocessing import RunningAveragePostprocessor
    from pysad.transform.preprocessing import InstanceUnitNormScaler
    from pysad.utils import Data
    from tqdm import tqdm
    import numpy as np
    
    # This example demonstrates the usage of the most modules in PySAD framework.
    if __name__ == "__main__":
        np.random.seed(61)  # Fix random seed.
    
        # Get data to stream.
        data = Data("data")
        X_all, y_all = data.get_data("arrhythmia.mat")
        X_all, y_all = shuffle(X_all, y_all)
    
        iterator = ArrayStreamer(shuffle=False)  # Init streamer to simulate streaming data.
    
        model = KNNCAD(probationary_period=10)
        #model = RobustRandomCutForest()
        #model = xStream()  # Init xStream anomaly detection model.
        preprocessor = InstanceUnitNormScaler()  # Init normalizer.
        postprocessor = RunningAveragePostprocessor(window_size=5)  # Init running average postprocessor.
        auroc = AUROCMetric()  # Init area under receiver-operating- characteristics curve metric.
    
        for X, y in tqdm(iterator.iter(X_all[100:], y_all[100:])):  # Stream data.
            X = preprocessor.fit_transform_partial(X)  # Fit preprocessor to and transform the instance.
    
            score = model.fit_score_partial(X)  # Fit model to and score the instance.
            score = postprocessor.fit_transform_partial(score)  # Apply running averaging to the score.
    
            auroc.update(y, score)  # Update AUROC metric.
    
        # Output resulting AUROCS metric.
        print("\nAUROC: ", auroc.get())
    

    Gives error:

    /usr/local/lib/python3.6/dist-packages/sklearn/utils/deprecation.py:143: FutureWarning: The sklearn.utils.testing module is  deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.utils. Anything that cannot be imported from sklearn.utils is now part of the private API.
      warnings.warn(message, FutureWarning)
    0it [00:00, ?it/s]
    ---------------------------------------------------------------------------
    IndexError                                Traceback (most recent call last)
    <ipython-input-3-c8fd98afee64> in <module>()
         31         X = preprocessor.fit_transform_partial(X)  # Fit preprocessor to and transform the instance.
         32 
    ---> 33         score = model.fit_score_partial(X)  # Fit model to and score the instance.
         34         score = postprocessor.fit_transform_partial(score)  # Apply running averaging to the score.
         35 
    
    1 frames
    /usr/local/lib/python3.6/dist-packages/pysad/models/knn_cad.py in fit_partial(self, X, y)
         73                 self.training.append(self.calibration.pop(0))
         74 
    ---> 75             self.scores.pop(0)
         76             self.calibration.append(new_item)
         77             self.scores.append(new_score)
    
    IndexError: pop from empty list
    

    If i set the probationary_period to 25 i see a slightly different error:

    ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent call last)
    <ipython-input-4-fb6b7ffc5fde> in <module>()
         31         X = preprocessor.fit_transform_partial(X)  # Fit preprocessor to and transform the instance.
         32 
    ---> 33         score = model.fit_score_partial(X)  # Fit model to and score the instance.
         34         score = postprocessor.fit_transform_partial(score)  # Apply running averaging to the score.
         35 
    
    4 frames
    <__array_function__ internals> in partition(*args, **kwargs)
    
    /usr/local/lib/python3.6/dist-packages/numpy/core/fromnumeric.py in partition(a, kth, axis, kind, order)
        744     else:
        745         a = asanyarray(a).copy(order="K")
    --> 746     a.partition(kth, axis=axis, kind=kind, order=order)
        747     return a
        748 
    
    ValueError: kth(=28) out of bounds (6)
    

    Then if I set probationary_period=50 it works.

    So feels like is some sort of edge case I may be hitting when probationary_period is low.

    I'm happy to work on a PR if some sort of easy fix we can make or even just want to set a default that might avoid people doing what I did :)

    opened by andrewm4894 0
Releases(v0.1.1)
Owner
Selim Firat Yilmaz
M.S. in Bilkent University EEE
Selim Firat Yilmaz
An implementation of the paper "A Neural Algorithm of Artistic Style"

A Neural Algorithm of Artistic Style implementation - Neural Style Transfer This is an implementation of the research paper "A Neural Algorithm of Art

Srijarko Roy 27 Sep 20, 2022
A simple, fully convolutional model for real-time instance segmentation.

You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██

Daniel Bolya 4.6k Dec 30, 2022
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

4 Dec 09, 2022
An auto discord account and token generator. Automatically verifies the phone number. Works without proxy. Bypasses captcha.

JOIN DISCORD SERVER https://discord.gg/uAc3agBY FREE HCAPTCHA SOLVING API Discord-Token-Gen An auto discord token generator. Auto verifies phone numbe

3kp 271 Jan 01, 2023
Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

DIGAN (ICLR 2022) Official PyTorch implementation of "Generating Videos with Dyn

Sihyun Yu 147 Dec 31, 2022
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Marius 107 Jan 03, 2023
The personal repository of the work: *DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer*.

DanceNet3D The personal repository of the work: DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer. Dataset and Results Pleas

南嘉Nanga 36 Dec 21, 2022
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 1.5k Dec 29, 2022
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

46 Nov 06, 2022
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
Pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion"

MOSNet pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion" https://arxiv.org/abs/1904.08352 Dependency L

9 Nov 18, 2022