CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

Overview

CaFM-pytorch ICCV ACCEPT

Introduction of dataset VSD4K

Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city. Each category is consisted of various video length, including: 15s, 30s, 45s, etc. For a specific category and its specific video length, there are 3 scaling factors: x2, x3 and x4. In each file, there are HR images and its corresponding LR images. 1-n are training images , n - (n + n/10) are test images. (we select test image 1 out of 10). The dataset can be obtained from [https://pan.baidu.com/s/14pcsC7taB4VAa3jvyw1kog] (passward:u1qq) and google drive [https://drive.google.com/drive/folders/17fyX-bFc0IUp6LTIfTYU8R5_Ot79WKXC?usp=sharing].

e.g.:game 15s
dataroot_gt: VSD4K/game/game_15s_1/DIV2K_train_HR/00001.png
dataroot_lqx2: VSD4K/game/game_15s_1/DIV2K_train_LR_bicubic/X2/00001_x2.png
dataroot_lqx3: VSD4K/game/game_15s_1/DIV2K_train_LR_bicubic/X3/00001_x3.png
dataroot_lqx4: VSD4K/game/game_15s_1/DIV2K_train_LR_bicubic/X4/00001_x4.png

Proposed method

Introduction

Our paper "Overfitting the Data: Compact Neural Video Delivery via Content-aware Feature Modulation" has been submitted to 2021 ICCV. we aim to use super resolution network to improve the quality of video delivery recently. The whole precedure is shown below. We devide the whole video into several chunks and apply a joint training framework with Content aware Feature Module(CaFM) to train each chunk simultaneously. With our method, each video chunk only requires less than 1% of original parameters to be streamed, achieving even better SR performance. We conduct extensive experiments across various SR backbones(espcn,srcnn,vdsr,edsr16,edsr32,rcan), video time length(15s-10min), and scaling factors(x2-x4) to demonstrate the advantages of our method. All pretrain models(15s, 30s, 45s) of game category can be found in this link [https://pan.baidu.com/s/1P18FULL7CIK1FAa2xW56AA] (passward:bjv1) and google drive link [https://drive.google.com/drive/folders/1_N64A75iwgbweDBk7dUUDX0SJffnK5-l?usp=sharing].

Figure 1. The whole procedure of adopting content-aware DNNs for video delivery. A video is first divided into several chunks and the server trains one model for each chunk. Then the server delivers LR video chunks and models to client. The client runs the inference to super-resolve the LR chunks and obtain the SR video.

Quantitative results

We show our quantitative results in the table below. For simplicity, we only demonstrate the results on game and vlog datasets. We compare our method M{1-n} with M0 and S{1-n}. The experiments are conducted on EDSR.

  • M0: a EDSR without CaFM module, train on whole video.
  • Si: a EDSR without a CaFM module, train on one specific chunk i.
  • M{1-n}ours: a EDSR with n CaFM modules, train on n chunks simultaneously.
Dataset Game15s Game30s Game45s
Scale x2 x3 x4 x2 x3 x4 x2 x3 x4
M0 42.24 35.88 33.44 41.84 35.54 33.05 42.11 35.75 33.33
S{1-n} 42.82 36.42 34.00 43.07 36.73 34.17 43.22 36.72 34.32
M{1-n} Ours 43.13 37.04 34.47 43.37 37.12 34.58 43.46 37.31 34.79
Dataset Vlog15s Vlog30s Vlog45s
Scale x2 x3 x4 x2 x3 x4 x2 x3 x4
M0 48.87 44.51 42.58 47.79 43.38 41.24 47.98 43.58 41.53
S{1-n} 49.10 44.80 42.83 48.20 43.68 41.55 48.48 44.12 42.12
M{1-n} Ours 49.30 45.03 43.11 48.55 44.15 42.16 48.61 44.24 42.39

Quatitative results

We show the quatitative results in the figure below.

  • bicubic: SR images are obtained by bicubic
  • H.264/H.265: use the default setting of FFmpeg to generate the H.264 and H.265 videos

Dependencies

  • Python >= 3.6
  • Torch >= 1.0.0
  • opencv-python
  • numpy
  • skimage
  • imageio
  • matplotlib

Quickstart

M0 demotes the model without Cafm module which is trained on the whole dataset. S{1-n} denotes n models that trained on n chunks of video. M{1-n} demotes one model along with n Cafm modules that trained on the whole dataset. M{1-n} is our proposed method.

How to set data_range

n is the total frames in a video. We select one test image out of 10 training images. Thus, in VSD4K, 1-n is its training dataset, n-(n+/10) is the test dataset. Generally, we set 5s as the length of one chunk. Hence, 15s consists 3 chunks, 30s consists 6 chunks, etc.

Video length(train images + test images) chunks M0/M{1-n} S1 S2 S3 S4 S5 S6 S7 S8 S9
15s(450+45) 3 1-450/451-495 1-150/451-465 151-300/466-480 301-450/481-495 - - - - - -
30s(900+95) 6 1-900/901-990 1-150/901-915 151-300/916-930 301-450/931-945 451-600/946-960 601-750/961-975 751-900/976-990 - - -
45s(1350+135) 9 1-1350/1351-1485 1-150/1351-1365 151-300/1366-1380 301-450/1381-1395 451-600/1396-1410 601-750/1411-1425 751-900/1426-1440 901-1050/1441-1455 1051-1200/1456-1470 1201-1350/1471-1485

Train

For simplicity, we only demonstrate how to train 'game_15s' by our method.

  • For M{1-n} model:
CUDA_VISIBLE_DEVICES=3 python main.py --model {EDSR/ESPCN/VDSRR/SRCNN/RCAN} --scale {scale factor} --patch_size {patch size} --save {name of the trained model} --reset --data_train DIV2K --data_test DIV2K --data_range {train_range}/{test_range} --cafm --dir_data {path of data} --use_cafm --batch_size {batch size} --epoch {epoch} --decay {decay} --segnum {numbers of chunk} --length
e.g. 
CUDA_VISIBLE_DEVICES=3 python main.py --model EDSR --scale 2 --patch_size 48 --save trainm1_n --reset --data_train DIV2K --data_test DIV2K --data_range 1-450/451-495 --cafm --dir_data /home/datasets/VSD4K/game/game_15s_1 --use_cafm --batch_size 64 --epoch 500 --decay 300 --segnum 3 --is15s

You can apply our method on your own images. Place your HR images under YOURS/DIV2K_train_HR/, with the name start from 00001.png. Place your corresponding LR images under YOURS/DIV2K_train_LR_bicubic/X2, with the name start from 00001_x2.png.

e.g.:
dataroot_gt: YOURS/DIV2K_train_HR/00001.png
dataroot_lqx2: YOURS/DIV2K_train_LR_bicubic/X2/00001_x2.png
dataroot_lqx3: YOURS/DIV2K_train_LR_bicubic/X3/00001_x3.png
dataroot_lqx4: YOURS/DIV2K_train_LR_bicubic/X4/00001_x4.png
  • The running command is like:
CUDA_VISIBLE_DEVICES=3 python main.py --model {EDSR/ESPCN/VDSRR/SRCNN/RCAN} --scale {scale factor} --patch_size {patch size} --save {name of the trained model} --reset --data_train DIV2K --data_test DIV2K --data_range {train_range}/{test_range} --cafm --dir_data {path of data} --use_cafm --batch_size {batch size} --epoch {epoch} --decay {decay} --segnum {numbers of chunk} --length
  • For example:
e.g. 
CUDA_VISIBLE_DEVICES=3 python main.py --model EDSR --scale 2 --patch_size 48 --save trainm1_n --reset --data_train DIV2K --data_test DIV2K --data_range 1-450/451-495 --cafm --dir_data /home/datasets/VSD4K/game/game_15s_1 --use_cafm --batch_size 64 --epoch 500 --decay 300 --segnum 3 --is15s

Test

For simplicity, we only demonstrate how to run 'game' category of 15s. All pretrain models(15s, 30s, 45s) of game category can be found in this link [https://pan.baidu.com/s/1P18FULL7CIK1FAa2xW56AA] (passward:bjv1) and google drive link [https://drive.google.com/drive/folders/1_N64A75iwgbweDBk7dUUDX0SJffnK5-l?usp=sharing].

  • For M{1-n} model:
CUDA_VISIBLE_DEVICES=3 python main.py --data_test DIV2K --scale {scale factor} --model {EDSR/ESPCN/VDSRR/SRCNN/RCAN} --test_only --pre_train {path to pretrained model} --data_range {train_range} --{is15s/is30s/is45s} --cafm  --dir_data {path of data} --use_cafm --segnum 3
e.g.:
CUDA_VISIBLE_DEVICES=3 python main.py --data_test DIV2K --scale 4 --model EDSR --test_only --pre_train /home/CaFM-pytorch/experiment/edsr_x2_p48_game_15s_1_seg1-3_batch64_k1_g64/model/model_best.pt --data_range 1-150 --is15s --cafm  --dir_data /home/datasets/VSD4K/game/game_15s_1 --use_cafm --segnum 3

Additional

We also demonstrate our method in vimeo dataset and HEVC test sequence. These datasets and all trained models will be released as soon as possible. By the way, we add SEFCNN.py into our backbone list which is suggested by reviewer.The code will be updated regularly.

Acknowledgment

AdaFM proposed a closely related method for continual modulation of restoration levels. While they aimed to handle arbitrary restoration levels between a start and an end level, our goal is to compress the models of different chunks for video delivery. The reader is encouraged to review their work for more details. Please also consider to cite AdaFM if you use the code. [https://github.com/hejingwenhejingwen/AdaFM]

Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and ap

3.4k Jan 04, 2023
A PyTorch library for Vision Transformers

VFormer A PyTorch library for Vision Transformers Getting Started Read the contributing guidelines in CONTRIBUTING.rst to learn how to start contribut

Society for Artificial Intelligence and Deep Learning 142 Nov 28, 2022
Author's PyTorch implementation of TD3 for OpenAI gym tasks

Addressing Function Approximation Error in Actor-Critic Methods PyTorch implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3). If y

Scott Fujimoto 1.3k Dec 25, 2022
Official Implementation of LARGE: Latent-Based Regression through GAN Semantics

LARGE: Latent-Based Regression through GAN Semantics [Project Website] [Google Colab] [Paper] LARGE: Latent-Based Regression through GAN Semantics Yot

83 Dec 06, 2022
My personal code and solution to the Synacor Challenge from 2012 OSCON.

Synacor OSCON Challenge Solution (2012) This repository contains my code and solution to solve the Synacor OSCON 2012 Challenge. If you are interested

2 Mar 20, 2022
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Keon Lee 157 Jan 01, 2023
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
Dense matching library based on PyTorch

Dense Matching A general dense matching library based on PyTorch. For any questions, issues or recommendations, please contact Prune at

Prune Truong 399 Dec 28, 2022
This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.

EEND-vector clustering The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates

45 Dec 26, 2022
FFTNet vocoder implementation

Unofficial Implementation of FFTNet vocode paper. implement the model. implement tests. overfit on a single batch (sanity check). linearize weights fo

Eren Gölge 81 Dec 08, 2022
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Piggyback: https://arxiv.org/abs/1801.06519 Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Arun Mallya 165 Nov 22, 2022
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

11 Dec 13, 2022
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023