Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Overview

Piggyback: https://arxiv.org/abs/1801.06519

Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Datasets in PyTorch format are available here: https://uofi.box.com/s/ixncr3d85guosajywhf7yridszzg5zsq
All rights belong to the respective publishers. The datasets are provided only to aid reproducibility.

The PyTorch-friendly Places365 dataset can be downloaded from http://places2.csail.mit.edu/download.html

Place masks in checkpoints/ and unzipped datasets in data/

VGG-16 ResNet-50 DenseNet-121
CUBS 20.75 18.23 19.24
Stanford Cars 11.78 10.19 10.62
Flowers 6.93 4.77 4.91
WikiArt 29.80 28.57 29.33
Sketch 22.30 19.75 20.05

Note that the numbers in the paper are averaged over multiple runs for each ordering of datasets. These numbers were obtained by evaluating the models on a Titan X (Pascal). Note that numbers on other GPUs might be slightly different (~0.1%) owing to cudnn algorithm selection. https://discuss.pytorch.org/t/slightly-different-results-on-k-40-v-s-titan-x/10064

Requirements:

Python 2.7 or 3.xx
torch==0.2.0.post3
torchvision==0.1.9
torchnet (pip install git+https://github.com/pytorch/[email protected])
tqdm (pip install tqdm)

Run all code from the src/ directory, e.g. ./scripts/run_piggyback_training.sh

Training:

Check out src/scripts/run_piggyback_training.sh.

This script uses the default hyperparams and trains a model as described in the paper. The best performing model on the val set is saved to disk. This saved model includes the real-valued mask weights.

By default, we use the models provided by torchvision as our backbone networks. If you intend to evaluate with the masks provided by us, please use the correct version of torch and torchvision. In case you want to use a different version, but still want to use our masks, then download the pytorch_backbone networks provided in the box link above. Make appropriate changes to your pytorch code to load those backbone models.

Saving trained masks only.

Check out src/scripts/run_packing.sh.

This extracts the binary/ternary masks from the above trained models, and saves them separately.

Eval:

Use the saved masks, apply them to a backbone network and run eval.

By default, our backbone models are those provided with torchvision.
Note that to replicate our results, you have to use the package versions specified above.
Newer package versions might have different weights for the backbones, and the provided masks won't work.

cd src  # Run everything from src/

CUDA_VISIBLE_DEVICES=0 python pack.py --mode eval --dataset flowers \
  --arch vgg16 \
  --maskloc ../checkpoints/vgg16_binary.pt
Owner
Arun Mallya
NVIDIA Research
Arun Mallya
Source code related to the article submitted to the International Conference on Computational Science ICCS 2022 in London

POTHER: Patch-Voted Deep Learning-based Chest X-ray Bias Analysis for COVID-19 Detection Source code related to the article submitted to the Internati

Tomasz Szczepański 1 Apr 29, 2022
DGN pymarl - Implementation of DGN on Pymarl, which could be trained by VDN or QMIX

This is the implementation of DGN on Pymarl, which could be trained by VDN or QM

4 Nov 23, 2022
A TensorFlow implementation of FCN-8s

FCN-8s implementation in TensorFlow Contents Overview Examples and demo video Dependencies How to use it Download pre-trained VGG-16 Overview This is

Pierluigi Ferrari 50 Aug 08, 2022
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
Cascaded Pyramid Network (CPN) based on Keras (Tensorflow backend)

ML2 Takehome Project Reimplementing the paper: Cascaded Pyramid Network for Multi-Person Pose Estimation Dataset The model uses the COCO dataset which

Vo Van Tu 1 Nov 22, 2021
Multi-scale discriminator feature-wise loss function

Multi-Scale Discriminative Feature Loss This repository provides code for Multi-Scale Discriminative Feature (MDF) loss for image reconstruction algor

Graphics and Displays group - University of Cambridge 76 Dec 12, 2022
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022
Intro-to-dl - Resources for "Introduction to Deep Learning" course.

Introduction to Deep Learning course resources https://www.coursera.org/learn/intro-to-deep-learning Running on Google Colab (tested for all weeks) Go

Advanced Machine Learning specialisation by HSE 761 Dec 24, 2022
PyTorch for Semantic Segmentation

PyTorch for Semantic Segmentation This repository contains some models for semantic segmentation and the pipeline of training and testing models, impl

Zijun Deng 1.7k Jan 06, 2023
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
🛰️ List of earth observation companies and job sites

Earth Observation Companies & Jobs source Portals & Jobs Geospatial Geospatial jobs newsletter: ~biweekly newsletter with geospatial jobs by Ali Ahmad

Dahn 64 Dec 27, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022