This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.

Overview

EEND-vector clustering

The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates two complementary major diarization approaches, i.e., traditional clustering-based and emerging end-to-end neural network-based approaches, to make the best of both worlds. In [1] it is shown that the EEND-vector clustering outperforms EEND when the recording is long (e.g., more than 5 min), while in [2] it is shown based on CALLHOME data that it outperforms x-vector clustering and EEND-EDA especially when the number of speakers in recordings is large.

This repository contains an example implementation of the EEND-vector clustering based on Pytorch to reproduce the results in [2], i.e., the CALLHOME experiments. For the trainer, we use Padertorch. This repository is implemented based on EEND and relies on some useful functions provided therein.

References

[1] Keisuke Kinoshita, Marc Delcroix, and Naohiro Tawara, "Integrating end-to-end neural and clustering-based diarization: Getting the best of both worlds," Proc. ICASSP, pp. 7198–7202, 2021

[2] Keisuke Kinoshita, Marc Delcroix, and Naohiro Tawara, "Advances in integration of end-to-end neural and clustering-based diarization for real conversational speech," Proc. Interspeech, 2021 (to appear)

Citation

@inproceedings{eend-vector-clustering,
 author = {Keisuke Kinoshita and Marc Delcroix and Naohiro Tawara},
 title = {Integrating End-to-End Neural and Clustering-Based Diarization: Getting the Best of Both Worlds},
 booktitle = {{ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}},
 pages={7198-7202}
 year = {2021}
}

Install tools

Requirements

  • NVIDIA CUDA GPU
  • CUDA Toolkit (version == 9.2, 10.1 or 10.2)

Install kaldi and python environment

cd tools
make
  • This command builds kaldi at tools/kaldi
    • if you want to use pre-build kaldi
      cd tools
      make KALDI=<existing_kaldi_root>
      This option make a symlink at tools/kaldi
  • This command extracts miniconda3 at tools/miniconda3, and creates conda envirionment named 'eend'
  • Then, installs Pytorch and Padertorch into 'eend' environment
  • Then, clones EEND to reference symbolic links stored under eend/, egs/ and utils/

Test recipe (mini_librispeech)

Configuration

  • Modify egs/mini_librispeech/v1/cmd.sh according to your job schedular. If you use your local machine, use "run.pl" (default). If you use Grid Engine, use "queue.pl" If you use SLURM, use "slurm.pl". For more information about cmd.sh see http://kaldi-asr.org/doc/queue.html.

Run data preparation, training, inference, and scoring

cd egs/mini_librispeech/v1
CUDA_VISIBLE_DEVICES=0 ./run.sh
  • See RESULT.md and compare with your result.

CALLHOME experiment

Configuraition

  • Modify egs/callhome/v1/cmd.sh according to your job schedular. If you use your local machine, use "run.pl" (default). If you use Grid Engine, use "queue.pl" If you use SLURM, use "slurm.pl". For more information about cmd.sh see http://kaldi-asr.org/doc/queue.html.

Run data preparation, training, inference, and scoring

cd egs/callhome/v1
CUDA_VISIBLE_DEVICES=0 ./run.sh --db_path <db_path>
# <db_path> means absolute path of the directory where the necessary LDC corpora are stored.
  • See RESULT.md and compare with your result.
  • If you want to run multi-GPU training, simply set CUDA_VISIBLE_DEVICES appropriately. This environment variable may be automatically set by your job schedular such as SLURM.
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
Machine Learning with JAX Tutorials

The purpose of this repo is to make it easy to get started with JAX. It contains my "Machine Learning with JAX" series of tutorials (YouTube videos and Jupyter Notebooks) as well as the content I fou

Aleksa Gordić 372 Dec 28, 2022
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022
AugLiChem - The augmentation library for chemical systems.

AugLiChem Welcome to AugLiChem! The augmentation library for chemical systems. This package supports augmentation for both crystaline and molecular sy

BaratiLab 17 Jan 08, 2023
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023
Get a Grip! - A robotic system for remote clinical environments.

Get a Grip! Within clinical environments, sterilization is an essential procedure for disinfecting surgical and medical instruments. For our engineeri

Jay Sharma 1 Jan 05, 2022
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn

Antonio M. Sudoso 1 Nov 13, 2022
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
My solution for the 7th place / 245 in the Umoja Hack 2022 challenge

Umoja Hack 2022 : Insurance Claim Challenge My solution for the 7th place / 245 in the Umoja Hack 2022 challenge Umoja Hack Africa is a yearly hackath

Souames Annis 17 Jun 03, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v

1 Dec 29, 2021
Texture mapping with variational auto-encoders

vae-textures This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using J

Alex Nichol 41 May 24, 2022
NEO: Non Equilibrium Sampling on the orbit of a deterministic transform

NEO: Non Equilibrium Sampling on the orbit of a deterministic transform Description of the code This repo describes the NEO estimator described in the

0 Dec 01, 2021
Implementation of a Transformer, but completely in Triton

Transformer in Triton (wip) Implementation of a Transformer, but completely in Triton. I'm completely new to lower-level neural net code, so this repo

Phil Wang 152 Dec 22, 2022
Code for the paper "Location-aware Single Image Reflection Removal"

Location-aware Single Image Reflection Removal The shown images are provided by the datasets from IBCLN, ERRNet, SIR2 and the Internet images. The cod

72 Dec 08, 2022
AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Adelaide Intelligent Machines (AIM) Group 3k Jan 02, 2023
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
Implementation of Feedback Transformer in Pytorch

Feedback Transformer - Pytorch Simple implementation of Feedback Transformer in Pytorch. They improve on Transformer-XL by having each token have acce

Phil Wang 93 Oct 04, 2022