Compare neural networks by their feature similarity

Overview

PyTorch Model Compare

A tiny package to compare two neural networks in PyTorch. There are many ways to compare two neural networks, but one robust and scalable way is using the Centered Kernel Alignment (CKA) metric, where the features of the networks are compared.

Centered Kernel Alignment

Centered Kernel Alignment (CKA) is a representation similarity metric that is widely used for understanding the representations learned by neural networks. Specifically, CKA takes two feature maps / representations X and Y as input and computes their normalized similarity (in terms of the Hilbert-Schmidt Independence Criterion (HSIC)) as

CKA original version

Where K and L are similarity matrices of X and Y respectively. However, the above formula is not scalable against deep architectures and large datasets. Therefore, a minibatch version can be constructed that uses an unbiased estimator of the HSIC as

alt text

alt text

The above form of CKA is from the 2021 ICLR paper by Nguyen T., Raghu M, Kornblith S.

Getting Started

Installation

pip install torch_cka

Usage

from torch_cka import CKA
model1 = resnet18(pretrained=True)  # Or any neural network of your choice
model2 = resnet34(pretrained=True)

dataloader = DataLoader(your_dataset, 
                        batch_size=batch_size, # according to your device memory
                        shuffle=False)  # Don't forget to seed your dataloader

cka = CKA(model1, model2,
          model1_name="ResNet18",   # good idea to provide names to avoid confusion
          model2_name="ResNet34",   
          model1_layers=layer_names_resnet18, # List of layers to extract features from
          model2_layers=layer_names_resnet34, # extracts all layer features by default
          device='cuda')

cka.compare(dataloader) # secondary dataloader is optional

results = cka.export()  # returns a dict that contains model names, layer names
                        # and the CKA matrix

Examples

torch_cka can be used with any pytorch model (subclass of nn.Module) and can be used with pretrained models available from popular sources like torchHub, timm, huggingface etc. Some examples of where this package can come in handy are illustrated below.

Comparing the effect of Depth

A simple experiment is to analyse the features learned by two architectures of the same family - ResNets but of different depths. Taking two ResNets - ResNet18 and ResNet34 - pre-trained on the Imagenet dataset, we can analyse how they produce their features on, say CIFAR10 for simplicity. This comparison is shown as a heatmap below.

alt text

We see high degree of similarity between the two models in lower layers as they both learn similar representations from the data. However at higher layers, the similarity reduces as the deeper model (ResNet34) learn higher order features which the is elusive to the shallower model (ResNet18). Yet, they do indeed have certain similarity in their last fc layer which acts as the feature classifier.

Comparing Two Similar Architectures

Another way of using CKA is in ablation studies. We can go further than those ablation studies that only focus on resultant performance and employ CKA to study the internal representations. Case in point - ResNet50 and WideResNet50 (k=2). WideResNet50 has the same architecture as ResNet50 except having wider residual bottleneck layers (by a factor of 2 in this case).

alt text

We clearly notice that the learned features are indeed different after the first few layers. The width has a more pronounced effect in deeper layers as compared to the earlier layers as both networks seem to learn similar features in the initial layers.

As a bonus, here is a comparison between ViT and the latest SOTA model Swin Transformer pretrained on ImageNet22k.

alt text

Comparing quite different architectures

CNNs have been analysed a lot over the past decade since AlexNet. We somewhat know what sort of features they learn across their layers (through visualizations) and we have put them to good use. One interesting approach is to compare these understandable features with newer models that don't permit easy visualizations (like recent vision transformer architectures) and study them. This has indeed been a hot research topic (see Raghu et.al 2021).

alt text

Comparing Datasets

Yet another application is to compare two datasets - preferably two versions of the data. This is especially useful in production where data drift is a known issue. If you have an updated version of a dataset, you can study how your model will perform on it by comparing the representations of the datasets. This can be more telling about actual performance than simply comparing the datasets directly.

This can also be quite useful in studying the performance of a model on downstream tasks and fine-tuning. For instance, if the CKA score is high for some features on different datasets, then those can be frozen during fine-tuning. As an example, the following figure compares the features of a pretrained Resnet50 on the Imagenet test data and the VOC dataset. Clearly, the pretrained features have little correlation with the VOC dataset. Therefore, we have to resort to fine-tuning to get at least satisfactory results.

alt text

Tips

  • If your model is large (lots of layers or large feature maps), try to extract from select layers. This is to avoid out of memory issues.
  • If you still want to compare the entire feature map, you can run it multiple times with few layers at each iteration and export your data using cka.export(). The exported data can then be concatenated to produce the full CKA matrix.
  • Give proper model names to avoid confusion when interpreting the results. The code automatically extracts the model name for you by default, but it is good practice to label the models according to your use case.
  • When providing your dataloader(s) to the compare() function, it is important that they are seeded properly for reproducibility.
  • When comparing datasets, be sure to set drop_last=True when building the dataloader. This resolves shape mismatch issues - especially in differently sized datasets.

Citation

If you use this repo in your project or research, please cite as -

@software{subramanian2021torch_cka,
    author={Anand Subramanian},
    title={torch_cka},
    url={https://github.com/AntixK/PyTorch-Model-Compare},
    year={2021}
}
Owner
Anand Krishnamoorthy
Research Engineer
Anand Krishnamoorthy
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
Python implementation of Project Fluent

Project Fluent This is a collection of Python packages to use the Fluent localization system. python-fluent consists of these packages: fluent.syntax

Project Fluent 155 Dec 28, 2022
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
Inflated i3d network with inception backbone, weights transfered from tensorflow

I3D models transfered from Tensorflow to PyTorch This repo contains several scripts that allow to transfer the weights from the tensorflow implementat

Yana 479 Dec 08, 2022
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
Official repository of DeMFI (arXiv.)

DeMFI This is the official repository of DeMFI (Deep Joint Deblurring and Multi-Frame Interpolation). [ArXiv_ver.] Coming Soon. Reference Jihyong Oh a

Jihyong Oh 56 Dec 14, 2022
Data Consistency for Magnetic Resonance Imaging

Data Consistency for Magnetic Resonance Imaging Data Consistency (DC) is crucial for generalization in multi-modal MRI data and robustness in detectin

Dimitris Karkalousos 19 Dec 12, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
This repository is for EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpretation Data

InterpretationData This repository is for our EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpr

4 Apr 21, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"

NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement

USAF - MIT Artificial Intelligence Accelerator 46 Dec 15, 2022
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Roy 2.8k Dec 29, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
Pyramid Pooling Transformer for Scene Understanding

Pyramid Pooling Transformer for Scene Understanding Requirements: torch 1.6+ torchvision 0.7.0 timm==0.3.2 Validated on torch 1.6.0, torchvision 0.7.0

Yu-Huan Wu 119 Dec 29, 2022