Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

Overview

lbs-data

Motivation

Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public good while preserving privacy? Can we realize this goal by generating synthetic data for use instead of the real data? The synthetic data would need to balance utility and privacy.

Overview

What:

This project uses location based services (LBS) data provided by a location intelligence company in order to train a RNN model to generate synthetic location data. The goal is for the synthetic data to maintain the properties of the real data, at the individual and aggregate levels, in order to retain its utility. At the same time, the synthetic data should sufficiently differ from the real data at the individual level, in order to preserve user privacy.

Furthermore, the system uses home and work areas as labels and inputs in order to generate location data for synthetic users with the given home and work areas.
This addresses the issue of limited sample sizes. Population data, such as census data, can be used to create the input necessary to output a synthetic location dataset that represents the true population in size and distribution.

Data

/data/

ACS data

data/ACS/ma_acs_5_year_census_tract_2018/

Population data is sourced from the 2018 American Community Survey 5-year estimates.

LBS data

/data/mount/

Privately stored on a remote server.

Geography and time period

  • Geography: The region of study is limited to 3 counties surrounding Boston, MA.
  • Time period: The training and output data is for the first 5-day workweek of May 2018.

Data representation

The LBS data are provided as rows.

device ID, latitude, longitude, timestamp, dwelltime

The data are transformed into "stay trajectories", which are sequences where each index of a sequence represents a 1-hour time interval. Each stay trajectory represents the data for one user (device ID). The value at that index represents the location/area (census tract) where the user spent the most time during that 1-hour interval.

e.g.

[A,B,D,C,A,A,A,NULL,B...]

Where each letter represents a location. There are null values when no location data is reported in the time interval.

home and work locations are inferred for each user stay trajectory. stay trajectories are prefixed with the home and work locations. This home, work prefixes then serve as labels.

[home,work,A,B,D,C,A,A,A,NULL,B...]

Where home,work values are also elements (frequently) occuring in their associated stay trajectory (e.g. home=A).

These sequences are used to train the model and are also output by the model.

RNN

The RNN model developed in this work is meant to be simple and replicable. It was implemented via the open source textgenrnn library. https://github.com/minimaxir/textgenrnn.

Many models (>70) are trained with a variety of hyper parameter values. The models are each trained on the same training data and then use the same input (home, work labels) to generate output synthetic data. The output is evalued via a variety of utility and privacy metrics in order to determine the best model/parameters.

Pipeline

Preprocessing

Define geography / shapefiles

./shapefile_shaper.ipynb

Our study uses 3 counties surrounding Boston, MA: Middlesex, Norfolk, Suffolk counties.

shapefile_shaper prunes MA shapefiles for this geography.

Output files are in ./shapefiles/ma/

Census tracts are used as "areas"/locations in stay trajectories.

Data filtering

./preprocess_filtering.ipynb

The LBS data is sparse. Some users report just a few datapoints, while other users report many. In order to confidently infer home and work locations, and learn patterns, we only include data from devices with sufficient reporting.

./preprocess_filtering.ipynb filters the data accordingly. It pokes the data to try to determine what the right level of filtering is. It outputs saved files with filtered data. Namely, it saves a datafile with LBS data from devices that reported at least 3 days and 3 nights of data during the 1 workweek of the study period. This is the pruned dataset used in the following work.

Attach areas

/attach_areas.ipynb

Census areas are attached to LBS data rows.

Home, work inference

./infer_home_work.ipynb

Defines functions to infer home and work locations (census tracts ) for each device user, based on their LBS data. The home location is where the user spends most time in nighttime hours. The "work" location is where the user spends the most time in workday hours. These locations can be the same.

This file helps determine good hours to use for nighttime hours. Once the functions are defined, they are used to evaluate the data representativeness by comparing the inferred population statistics to ACS 2018 census data.

Saves a mapping of LBS user IDS to the inferred home,work locations.

Stay trajectories setup

./trajectory_synthesis/trajectory_synthesis_notebook.ipynb

Transforms preprocessed LBS data into prefixed stay trajectories.

And outputs files for model training, data generation, and comparison.

Note: for the purposes of model training and data generation, the area tokens within stay trajectories can be arbitrary. What is important for the model’s success is the relationship between them. In order to save the stay trajectories in this repository yet keep real data private, we do the following. We map real census areas to integers, and map areas in stay trajectories to the integers representing the areas. We use the transformed stay trajectories for model training and data generation. The mapping between real census areas and their integer representations is kept private. We can then map the integers in stay trajectories back to the real areas they represent when needed (such as when evaluating trip distance metrics).

Output files:

./data/relabeled_trajectories_1_workweek.txt: D: Full training set of 22704 trajectories

./data/relabeled_trajectories_1_workweek_prefixes_to_counts.json: Maps D home,work label prefixes to counts

./data/relabeled_trajectories_1_workweek_sample_2000.txt: S: Random sample of 2000 trajectories from D.

./data/relabeled_trajectories_1_workweek_prefixes_to_counts_sample_2000.json: Maps S home,work label prefixes to counts

  • This is used as the input for data generation so that the output sythetic sample, S', has a home,work label pair distribution that matches S.

Model training and data generation

./trajectory_synthesis/textgenrnn_generator/

Models with a variety of hyperparameter combinations were trained and then used to generate a synthetic sample.

The files model_trainer.py and generator.py are the templates for the scripts used to train and generate.

The model (hyper)parameter combinations were tracked in a spreadsheet. ./trajectory_synthesis/textgenrnn_generator/textgenrnn_model_parameters_.csv

Evaluation

./trajectory_synthesis/evaluation/evaluate_rnn.ipynb

A variety of utility and privacy evaluation tools and metrics were developed. Models were evaluated by their synthetic data outputs (S'). This was done in ./trajectory_synthesis/evaluation/evaluate_rnn.ipynb. The best model (i.e. best parameters) was determined by these evaluations. The results for this model are captured in trajectory_synthesis/evaluation/final_eval_plots.ipynb.

Owner
Alex
Systems Architect, product oriented Engineer, Hacker for the social good, Math Nerd that loves solving hard problems and working with great people.
Alex
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
This repo contains source code and materials for the TEmporally COherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Nils Thuerey 5.2k Jan 02, 2023
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

ccks2021-track3 CCKS2021中文NLP地址相关性任务-赛道三-冠军方案 团队:我的加菲鱼- wodejiafeiyu 初赛第二/复赛第一/决赛第一 前言 19年开始,陆陆续续参加了一些比赛,拿到过一些top,比较懒一直都没分享过,这次比较幸运又拿了top1,打算分享下 分类的任务

shaochenjie 131 Dec 31, 2022
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

Sornsiri.P 7 Dec 22, 2022
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener

Eunice Jun 11 Nov 15, 2022
공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다.

ObsCare_Main 소개 공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다. CCTV의 대수가 급격히 늘어나면서 관리와 효율성 문제와 더불어, 곳곳에 설치된 CCTV를 개별 관제하는 것으로는 응급 상

5 Jul 07, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022