PyQt6 configuration in yaml format providing the most simple script.

Overview

PyamlQt(ぴゃむるきゅーと)

PyPI version

PyQt6 configuration in yaml format providing the most simple script.

Requirements

  • yaml
  • PyQt6, ( PyQt5 )

Installation

pip install PyamlQt

Demo

python3 examples/chaos.py

Template

See examples/simple_gui.py.

import sys
import os

from pyamlqt.create_widgets import create_widgets
import pyamlqt.qt6_switch as qt6_switch

qt6_mode = qt6_switch.qt6

if qt6_mode:
    from PyQt6.QtWidgets import QApplication, QMainWindow
else:
    from PyQt5.QtWidgets import QApplication, QMainWindow

YAML = os.path.join(os.path.dirname(__file__), "../yaml/chaos.yaml")

class MainWindow(QMainWindow):
    def __init__(self):
        self.number = 0
        super().__init__()

        # geometry setting ---
        self.setWindowTitle("Simple GUI")
        self.setGeometry(0, 0, 800, 720)
        
        # Template ==========================================
        self.widgets, self.stylesheet = self.create_all_widgets(YAML)
        for key in self.widgets.keys():
            self.widgets[key].setStyleSheet(self.stylesheet[key])
        # ==============================================

        # --- Your code ----
        # -*-*-*-*-*-*-*-*-*
        # -----------------
        
        self.show()

    # Template ==========================================
    def create_all_widgets(self, yaml_path: str) -> dict:
        import yaml
        widgets, stylesheet_str = dict(), dict()
        with open(yaml_path, 'r') as f:
            self.yaml_data = yaml.load(f, Loader=yaml.FullLoader)
        
            for key in self.yaml_data:
                data = create_widgets.create(self, yaml_path, key, os.path.abspath(os.path.dirname(__file__)) + "/../")
                widgets[key], stylesheet_str[key] = data[0], data[1]

        return widgets, stylesheet_str
    # ==============================================

if __name__ == '__main__':
    app = QApplication(sys.argv)
    window = MainWindow()
    # sys.exit(app.exec_())
    sys.exit(app.exec())

Elements (dev)

In yaml, you can add the following elements defined in PyQt.Widgets This may be added in the future.

  • pushbutton : definition of QPushButton
  • qlabel : definition of QLabel
  • qlcdnumber : definition of QLCDNumber
  • qprogressbar : definition of QProgressBar
  • qlineedit : definition of QLineEdit
  • qcheckbox : definition of QCheckbox
  • qslider : definition of QSlider
  • qspinbox : definition of QSpinBox
  • qcombobox : definition of QCombobox
  • image : definition of QLabel (using image path)
  • stylesheet : definition of Stylesheet (define as QLabel and setHidden=True)

YAML format

PyamlQt defines common elements for simplicity. Not all values need to be defined, but if not set, default values will be applied

key: # key name (Required for your scripts)
  type: slider # QWidgets
  x_center: 500 # x center point
  y_center: 550 # y center point
  width: 200 # QWidgets width
  height: 50 # QWidgets height
  max: 100 # QObject max value
  min: 0 # QObject min value
  default: 70 # QObject set default value
  text: "Slider" # Text
  font_size: 30 # Text size [px]
  font_color: "#ff0000" # Text color
  font: "Ubuntu" # Text font
  font_bold: false # bold-text option
  items: # Selectable items( Combobox's option )
    - a
    - b
    - c

PyQt5 Mode

If you want to use PyQt5, you have to change the qt6_switch.py file.

  • Open the file and change the qt6_mode variable to False.
  • pip3 install PyQt5
  • pip3 install -v -e .
You might also like...
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.

NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine

phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Interactive Terraform visualization. State and configuration explorer.
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Releases(v0.3.0)
  • v0.3.0(Apr 28, 2022)

    Japanese

    PyamlQtはGUIデザイン初心者のためのGUI定義フォーマットです。コントリビューション大歓迎です!

    しばらくはAPIの破壊的変更が行われる可能性があります。

    変更点

    • 新しいモジュールPyamlQtWindow
      • 初期化には引数が必要です。(README.mdを読んでください)
      • デモプログラムがとてもシンプルになりました。

    English

    PyamlQt is a GUI definition format for GUI design beginners. Contributions are welcome!

    There is a possibility of destructive changes to the API for the time being.

    Changes

    • New module PyamlQtWindow.
      • Arguments are required for initialization. (Please read README.md)
      • The demo program is now very simple.

    import sys
    import os
    
    from pyamlqt.mainwindow import PyamlQtWindow
    from PyQt6.QtWidgets import QApplication
    
    YAML = os.path.join(os.path.dirname(__file__), ". /yaml/chaos.yaml")
    
    class MainWindow(PyamlQtWindow):
        def __init__(self):
            self.number = 0
            super(). __init__("title", 0, 0, 800, 720, YAML)
            self.show()
    
    if __name__ == '__main__':
        app = QApplication(sys.argv)
        window = MainWindow()
        sys.exit(app.exec())
    
    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Apr 13, 2022)

    Japanese

    PyamlQtはGUIデザイン初心者のためのGUI定義フォーマットです。コントリビューション大歓迎です!

    しばらくはAPIの破壊的変更が行われる可能性があります。

    変更点

    • rect要素とstyle要素を追加し、stylesheetの仕様が大きく変更されました。
    • 複数のyamlからのロードをサポートします。パスは絶対パスを指定するか、GitHubなどのソースコードへのURL(raw.githubusercontent.com に続くURL)を指定してください。
      • URL指定する場合は~/.cache/pyamlqt/yaml以下にyamlがダウンロードされます。
      • ロード先のyamlファイルで同じファイル名・同じキー名を指定しないでください。再帰的にロードされてメモリを消費し続けます。

    English

    PyamlQt is a GUI definition format for GUI design beginners. Contributions are welcome!

    The API may undergo destructive changes for a while.

    Changes

    • The specification of stylesheet has been significantly changed with the addition of the rect and style elements.
    • Support for loading from multiple yaml files. Paths should be absolute paths or URLs to source code such as GitHub (URLs following raw.githubusercontent.com).
      • If you specify a URL, the yaml will be downloaded under ~/.cache/pyamlqt/yaml.
      • Do not specify the same file name and the same key name in the yaml file to be loaded. They will be loaded recursively and continue to consume memory.
    Source code(tar.gz)
    Source code(zip)
Owner
Ar-Ray
1st grade of National Institute of Technology(=Kosen) student. Associate degree, Hatena Blogger
Ar-Ray
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
Apache Flink

Apache Flink Apache Flink is an open source stream processing framework with powerful stream- and batch-processing capabilities. Learn more about Flin

The Apache Software Foundation 20.4k Dec 30, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
This repository provides a basic implementation of our GCPR 2021 paper "Learning Conditional Invariance through Cycle Consistency"

Learning Conditional Invariance through Cycle Consistency This repository provides a basic TensorFlow 1 implementation of the proposed model in our GC

BMDA - University of Basel 1 Nov 04, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
Layer 7 DDoS Panel with Cloudflare Bypass ( UAM, CAPTCHA, BFM, etc.. )

Blood Deluxe DDoS DDoS Attack Panel includes CloudFlare Bypass (UAM, CAPTCHA, BFM, etc..)(It works intermittently. Working on it) Don't attack any web

272 Nov 01, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Rishikesh (ऋषिकेश) 175 Dec 23, 2022
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

Google Research 258 Dec 29, 2022
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreño 108 Dec 27, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
[ICCV 2021] Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation

ADDS-DepthNet This is the official implementation of the paper Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation I

LIU_LINA 52 Nov 24, 2022
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

MMO: Meta Multi-Objectivization for Software Configuration Tuning This repository contains the data and code for the following paper that is currently

0 Nov 17, 2021
[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022