PyQt6 configuration in yaml format providing the most simple script.

Overview

PyamlQt(ぴゃむるきゅーと)

PyPI version

PyQt6 configuration in yaml format providing the most simple script.

Requirements

  • yaml
  • PyQt6, ( PyQt5 )

Installation

pip install PyamlQt

Demo

python3 examples/chaos.py

Template

See examples/simple_gui.py.

import sys
import os

from pyamlqt.create_widgets import create_widgets
import pyamlqt.qt6_switch as qt6_switch

qt6_mode = qt6_switch.qt6

if qt6_mode:
    from PyQt6.QtWidgets import QApplication, QMainWindow
else:
    from PyQt5.QtWidgets import QApplication, QMainWindow

YAML = os.path.join(os.path.dirname(__file__), "../yaml/chaos.yaml")

class MainWindow(QMainWindow):
    def __init__(self):
        self.number = 0
        super().__init__()

        # geometry setting ---
        self.setWindowTitle("Simple GUI")
        self.setGeometry(0, 0, 800, 720)
        
        # Template ==========================================
        self.widgets, self.stylesheet = self.create_all_widgets(YAML)
        for key in self.widgets.keys():
            self.widgets[key].setStyleSheet(self.stylesheet[key])
        # ==============================================

        # --- Your code ----
        # -*-*-*-*-*-*-*-*-*
        # -----------------
        
        self.show()

    # Template ==========================================
    def create_all_widgets(self, yaml_path: str) -> dict:
        import yaml
        widgets, stylesheet_str = dict(), dict()
        with open(yaml_path, 'r') as f:
            self.yaml_data = yaml.load(f, Loader=yaml.FullLoader)
        
            for key in self.yaml_data:
                data = create_widgets.create(self, yaml_path, key, os.path.abspath(os.path.dirname(__file__)) + "/../")
                widgets[key], stylesheet_str[key] = data[0], data[1]

        return widgets, stylesheet_str
    # ==============================================

if __name__ == '__main__':
    app = QApplication(sys.argv)
    window = MainWindow()
    # sys.exit(app.exec_())
    sys.exit(app.exec())

Elements (dev)

In yaml, you can add the following elements defined in PyQt.Widgets This may be added in the future.

  • pushbutton : definition of QPushButton
  • qlabel : definition of QLabel
  • qlcdnumber : definition of QLCDNumber
  • qprogressbar : definition of QProgressBar
  • qlineedit : definition of QLineEdit
  • qcheckbox : definition of QCheckbox
  • qslider : definition of QSlider
  • qspinbox : definition of QSpinBox
  • qcombobox : definition of QCombobox
  • image : definition of QLabel (using image path)
  • stylesheet : definition of Stylesheet (define as QLabel and setHidden=True)

YAML format

PyamlQt defines common elements for simplicity. Not all values need to be defined, but if not set, default values will be applied

key: # key name (Required for your scripts)
  type: slider # QWidgets
  x_center: 500 # x center point
  y_center: 550 # y center point
  width: 200 # QWidgets width
  height: 50 # QWidgets height
  max: 100 # QObject max value
  min: 0 # QObject min value
  default: 70 # QObject set default value
  text: "Slider" # Text
  font_size: 30 # Text size [px]
  font_color: "#ff0000" # Text color
  font: "Ubuntu" # Text font
  font_bold: false # bold-text option
  items: # Selectable items( Combobox's option )
    - a
    - b
    - c

PyQt5 Mode

If you want to use PyQt5, you have to change the qt6_switch.py file.

  • Open the file and change the qt6_mode variable to False.
  • pip3 install PyQt5
  • pip3 install -v -e .
You might also like...
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.

NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine

phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Interactive Terraform visualization. State and configuration explorer.
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Releases(v0.3.0)
  • v0.3.0(Apr 28, 2022)

    Japanese

    PyamlQtはGUIデザイン初心者のためのGUI定義フォーマットです。コントリビューション大歓迎です!

    しばらくはAPIの破壊的変更が行われる可能性があります。

    変更点

    • 新しいモジュールPyamlQtWindow
      • 初期化には引数が必要です。(README.mdを読んでください)
      • デモプログラムがとてもシンプルになりました。

    English

    PyamlQt is a GUI definition format for GUI design beginners. Contributions are welcome!

    There is a possibility of destructive changes to the API for the time being.

    Changes

    • New module PyamlQtWindow.
      • Arguments are required for initialization. (Please read README.md)
      • The demo program is now very simple.

    import sys
    import os
    
    from pyamlqt.mainwindow import PyamlQtWindow
    from PyQt6.QtWidgets import QApplication
    
    YAML = os.path.join(os.path.dirname(__file__), ". /yaml/chaos.yaml")
    
    class MainWindow(PyamlQtWindow):
        def __init__(self):
            self.number = 0
            super(). __init__("title", 0, 0, 800, 720, YAML)
            self.show()
    
    if __name__ == '__main__':
        app = QApplication(sys.argv)
        window = MainWindow()
        sys.exit(app.exec())
    
    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Apr 13, 2022)

    Japanese

    PyamlQtはGUIデザイン初心者のためのGUI定義フォーマットです。コントリビューション大歓迎です!

    しばらくはAPIの破壊的変更が行われる可能性があります。

    変更点

    • rect要素とstyle要素を追加し、stylesheetの仕様が大きく変更されました。
    • 複数のyamlからのロードをサポートします。パスは絶対パスを指定するか、GitHubなどのソースコードへのURL(raw.githubusercontent.com に続くURL)を指定してください。
      • URL指定する場合は~/.cache/pyamlqt/yaml以下にyamlがダウンロードされます。
      • ロード先のyamlファイルで同じファイル名・同じキー名を指定しないでください。再帰的にロードされてメモリを消費し続けます。

    English

    PyamlQt is a GUI definition format for GUI design beginners. Contributions are welcome!

    The API may undergo destructive changes for a while.

    Changes

    • The specification of stylesheet has been significantly changed with the addition of the rect and style elements.
    • Support for loading from multiple yaml files. Paths should be absolute paths or URLs to source code such as GitHub (URLs following raw.githubusercontent.com).
      • If you specify a URL, the yaml will be downloaded under ~/.cache/pyamlqt/yaml.
      • Do not specify the same file name and the same key name in the yaml file to be loaded. They will be loaded recursively and continue to consume memory.
    Source code(tar.gz)
    Source code(zip)
Owner
Ar-Ray
1st grade of National Institute of Technology(=Kosen) student. Associate degree, Hatena Blogger
Ar-Ray
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Adelaide Intelligent Machines (AIM) Group 3k Jan 02, 2023
A collection of awesome resources image-to-image translation.

awesome image-to-image translation A collection of resources on image-to-image translation. Contributing If you think I have missed out on something (

876 Dec 28, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
Justmagic - Use a function as a method with this mystic script, like in Nim

justmagic Use a function as a method with this mystic script, like in Nim. Just

witer33 8 Oct 08, 2022
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
Official implementation for the paper: Permutation Invariant Graph Generation via Score-Based Generative Modeling

Permutation Invariant Graph Generation via Score-Based Generative Modeling This repo contains the official implementation for the paper Permutation In

64 Dec 29, 2022
The official homepage of the (outdated) COCO-Stuff 10K dataset.

COCO-Stuff 10K dataset v1.1 (outdated) Holger Caesar, Jasper Uijlings, Vittorio Ferrari Overview Welcome to official homepage of the COCO-Stuff [1] da

Holger Caesar 263 Dec 11, 2022
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks

MEAL-V2 This is the official pytorch implementation of our paper: "MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tric

Zhiqiang Shen 653 Dec 19, 2022
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
Trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI

Introduction This script trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI. In order to run this

Momin Haider 0 Jan 02, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.

LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t

Andrew Patton 5 Nov 23, 2022
Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device" @ CAD&Graphics2019

PortraitNet Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device". @ CAD&Graphics 2019 Introduction We propose a

265 Dec 01, 2022
Main Results on ImageNet with Pretrained Models

This repository contains Pytorch evaluation code, training code and pretrained models for the following projects: SPACH (A Battle of Network Structure

Microsoft 151 Dec 14, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales

IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales. In this case, we ended up using XGBoost because it was the o

1 Jan 04, 2022
clustering moroccan stocks time series data using k-means with dtw (dynamic time warping)

Moroccan Stocks Clustering Context Hey! we don't always have to forecast time series am I right ? We use k-means to cluster about 70 moroccan stock pr

Ayman Lafaz 7 Oct 18, 2022
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022